2021-2022学年广东省广州市九年级上册人教版 期中数学试卷(word版无答案)
展开
这是一份2021-2022学年广东省广州市九年级上册人教版 期中数学试卷(word版无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.下面方程是一元二次方程的是( )
A.3x﹣1=0B.x+y=y+xC.x2=1D.3x2﹣y2=3xy
2.如图,△ABC经过旋转或轴对称得到△AB'C',其中△ABC绕点A逆时针旋转60°的是( )
A.B.
C.D.
3.抛物线y=﹣2x2向左平移2个单位长度,再向下平移3个单位长度后得到的抛物线解析式为( )
A.y=﹣2(x+2)2﹣3B.y=﹣2(x﹣2)2﹣3
C.y=﹣2(x+2)2+3D.y=﹣2(x﹣2)2+3
4.关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k的值为( )
A.2或4B.0或4C.﹣2或0D.﹣2或2
5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D在线段BC的延长线上,则∠ADE的大小为( )
A.55°B.50°C.45°D.35°
6.要组织一次篮球联赛,赛制为双循环形式,每两队之间都赛两场,计划安排15场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.12x(x−1)=15B.12x(x+1)=15
C.x(x+1)=15D.x(x﹣1)=15
7.关于x的一元二次方程(k+3)x2+5x+k2+2k﹣3=0的一个根是0,则k的值是( )
A.﹣3或1B.1C.﹣3D.﹣1
8.如图,直线y1=﹣x+b与抛物线y2=ax2(a≠0)交于点A(﹣2,4),B(1,1),若y1<y2,则x的取值范围是( )
A.x<﹣2B.﹣2<x<1C.x>﹣2或x>1D.x>1
9.如图,将函数y=12(x−2)2+1的图象沿y轴向上平移得到新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=12(x−2)2−2B.y=12(x−2)2+7
C.y=12(x−2)2−5D.y=12(x−2)2+4
10.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②b+2a=0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤ac﹣b2<0.其中错误结论的个数有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共6小题,每小题3分,共18分)
11.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于 .
12.如图所示的图案由三个叶片组成,绕点O旋转 后可以和自身重合.
13.如图,E是正方形ABCD的边BC上一点,△ABE逆时针旋转后能够与△ADF重合,旋转中心是 ,旋转角为 度
14.已知x1、x2是一元二次方程x2﹣4x+3=0的两根,则x1+x2﹣x1x2= .
15.抛物线y=mx2+(1﹣2m)x+1﹣3m过定点P,定点坐标P .
16.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,•••,An,•••,将抛物线y=x2沿直线l:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,•••,Mn,⃯都在直线l:y=x上;②抛物线依次经过点A1,A2,A3,•••,An,•••,(2)顶点M2019的坐标为( , )
三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)
17.解方程:x2﹣5x﹣6=0.
18.关于x的一元二次方程x2+bx+c=0的两个实数根分别为1和2,求b与c的值.
19.已知:在平面直角坐标系中(如图),△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).
(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;
(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°所得的△A2B2C1
20.如图,△ABC是等边三角形,D为△ABC外的一点,将△ADB绕点A逆时针旋转到△AEC的位置,连接DE.求证:DE=AE.
21.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆地欠驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元?
(2)求明年改装的无人驾驶出租车是多少辆?
22.某农户种植一种经济作物,总用水量y(m3)与种植时间x之间的函数关系如图所示.
(1)分别求当0≤x≤10和x>10时,y与x之间的函数关系式;
(2)第25天的总用水量为多少m3?
23.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A,C都落在G点),
(1)求∠EDF的度数;
(2)若GF=4,EG=6,求DG的长为多少?
(3)在(2)的条件下,求四边形ABCD的面积?
24.如图,抛物线y=ax2+bx+c的顶点坐标(1,﹣4)交x轴于A、B两点,与y轴交于C(0,﹣3),若抛物线上有一点D,∠ACD=45°.
(1)求抛物线的解析式;
(2)在对称轴上一点P,连结PA、PC、AC,△PAC周长最短时,点P的坐标;
(3)求点D的坐标.
25.如图,已知抛物线经过点A(﹣1,0),B(2,0),C(0,2)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与点B、C重合),过点M作MN//y轴,交抛物线于点N,连接CN,BN,若点M的横坐标为m,请用m的代数式表示△CMN的面积;
(3)求出△CMN的面积.
相关试卷
这是一份广东省广州市海珠区2020-2021学年七年级下学期期中数学试卷(Word版无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年广东省广州市八年级(上)期中数学试卷(Word版,无答案),共6页。试卷主要包含了选择题,填空题,解答题.等内容,欢迎下载使用。
这是一份广东省广州市荔湾区2021-2022学年七年级上学期期中数学试卷(word版 含答案),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。