所属成套资源:小升初数学总复习专项训练卷 全国通用版(含答案)
2021年小升初数学总复习《比和比例》专项训练卷 全国通用版(含答案)
展开
这是一份2021年小升初数学总复习《比和比例》专项训练卷 全国通用版(含答案),共13页。试卷主要包含了选择题,填空题(共24分),判断题,计算题(共24分),解答题(共32分)等内容,欢迎下载使用。
一、选择题(将正确答案的序号填在括号里)(10分)
1.(2分)下面( )能与:0.5组成比例。
A.5:4B.5:2C.4:5D.1:10
2.(2分)甲、乙、丙三袋水果糖,它们的质量比是2:3:5。已知甲袋水果糖重1kg,则丙袋水果糖重( ) kg。
A.5B.2.5C.10D.2
3.(2分)比的前项扩大2倍,后项缩小2倍,其比值( )。
A.扩大4倍 B.不变 C.缩小到原来的
4.(2分)甲数除以乙数的商是0.4,那么甲数与乙数的最简比是( )。
A.0.4:1B.5:2C.2:5
5.(2分)一个三角形的三个内角度数的比是1∶2∶3,这是( )三角形。
A.锐角B.直角C.钝角
二、填空题(共24分)
6.(1分)已知12x=5y,则x:y=_____:_____.
7.(3分)两种相关联的量,一种量变化,另一种量也随着_____,如果这两种量中_____的两个数的_____一定,这两种量就叫做成正比例的量。
8.(1分)一架飞机4小时飞行3200千米,飞机所行路程和所用时间的比是________∶________.
9.(4分)在2.4:1.6=3:2中,两个内项分别是_____和_____,他们的乘积是_____,两个外项分别是_____和_____,它们的乘积是_____。
10.(2分)甲、乙两数的比是5:4,甲数是乙数的,乙数是甲数的。
11.(2分)1.5∶2.5化成最简单的整数比是_____,比值是_____。
12.(1分)如果把3:4=6:8中第一个比的后项加上3,要使等式成立,第二个比的后项应该加上_____.
13.(4分) ÷8=21÷ == : = (小数).
14.(2分)圆的周长和直径 比例.如果y=,那么,x和y成 比例。
15.(1分)一个长方形的长是120厘米,宽是80厘米,长和宽的最简比是____∶____。
16.(1分)在一个比例中,两个外项互为倒数,其中一个内项是,则另一个内项是________。
17.(2分)小明和小李去图书馆,小明走的路程比小李多,小李走的时间比小明少,小明和小李两人的速度比是_____。
三、判断题(对的打“√”,错的打“×”)(10分)
19.(2分)将2∶3中比的前项增加6,要使比值不变,比的后项应该增加9。( )
20.(2分)一辆汽车从甲地到乙地所用的时间和速度成反比例。( )
21.(2分)4分米∶8厘米化简成最简单的整数比是1∶2。( )
22.(2分)在比例里两个外项的积减去两个内项的积,差等于1。( )
四、计算题(共24分)
23.(8分)先化简比,再求比值。
0.5∶0.25 ∶ 360千克∶0.45吨 25厘米∶12米
24.(8分)解方程或比例
x﹣x= 0.9×8﹣x=3 :x=16:9 :=x:4
25.(8分)根据条件列出比例,并解比例:
(1)1.3和2的比等于x和8的比。
(2)两个外项分别是24和18,两个内项分别是x和36。
五、解答题(共32分)
26.(6分)甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的,A、B两地相距多少米?
27.(8分)一列火车的行驶时间和路程如下表。
(1)请把下图补充完整,并回答问题。
(2)在这一过程中,哪个量没有变?
(3)时间和路程有什么关系?
(4)不计算,从图中直接找出行驶720km所用的时间。
28.(6分)在一幅比例尺为1∶8000000的地图上,量得A、B两地的距离为10厘米,有两辆汽车分别从A、B两地同时出发,相向而行,速度分别是55千米/时和45千米/时.两车经过多长时间相遇?
29.(6分)小红中午在家门口测量一棵树的高度时发现,这棵树在阳光下的影长是2.5米,同一时间,同一地点,测得一根直立在地面上,长为2米的竹竿的影长是0.5米,这棵树高多少?
30.(6分)小明家装修客厅,准备用面积为8平方分米的方砖铺,需要240块。如果改用10平方分米的方砖铺,需要多少块?
参考答案
1.C
2.B
【解析】
【分析】
甲是2份,用甲的重量除以甲的份数求出每份是多少千克,然后用每份的重量乘丙的份数即可求出丙袋水果的重量。
【详解】
1÷2×5=2.5(kg)
故答案为:B
3.A
【解析】试题分析:理解比的性质:比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变;如果前项不变,后项缩小几倍,比值就反而扩大几倍;以此即可得出答案.
解:比的前项扩大2倍,后项缩小2倍,比值就扩大:2×2=4倍。
4.C
5.B
【解析】
【分析】
根据题意可知三角形的三个内角度数的比是1∶2∶3,而三角形的内角和等于180°;则可得到三个内角的角度分别是多少,由此即可进行判断。
【详解】
180×
=180×
=90(度),
根据直角三角形的含义可知:该三角形是直角三角形;
答:这个三角形是直角三角形。
故选:B。
【点睛】
本题主要考查了比的应用与三角形的分类,关键是要掌握三角形的内角和等于180°。
6.5 12
7.变化 相对应 比值
8.800 1
【解析】
【分析】
本题考查的主要内容是比的应用问题,根据路程:时间,进行化简即可.
【详解】
3200:4=800∶1
故答案为:800;1.
9. 1.6 3 4.8 2.4 2 4.8
10.;
11.3∶5
12.6
13.7,24,7,8,0.675.
【解析】
试题分析:把连等式化为=( )÷8,依据分数与除法关系求解,
=21÷( ),依据分数与除法关系求解,
=( ):( ),依据分数与比的关系求解,
=( )(小数),依据分数化小数方法求解.
解:=(7)÷8,
=(7×3)÷(8×3)=21÷(24),
=(7):(8),
=(0.675)(小数);
点评:本题主要考查学生分数与除法,比,以及小数互化知识.
14.正、正.
【解析】
试题分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.
解:(1)因为圆的周长=π×直径,
所以圆的周长÷直径=π(一定),
符合正比例的意义,所以圆的周长和直径成正比例;
(2)因为y=,
所以=8(一定),
符合正比例的意义,所以x和y成正比例;
点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.
15.3 2
16.6
【解析】
【分析】
在比例里,两个内项积等于两个外项的积.两个外项互为倒数,则两个内项也互为倒数,所以用1除以已知的内项即可求出未知的内项.
【详解】
另一个内项是1÷=6.
故答案为6.
17.9:10
【解析】
【详解】
设小李走的路程是S,小明走的路程是;小明行走的时间是t,则小李行走的时间是,
小明和小李两人的速度比是:(÷t):[S÷()]= :=9:10答:小明和小李两人的速度比是 9:10;故答案为:9:10.
18.×
【解析】
试题分析:长方体的高和体积是两种相关联的量,长方体的体积变化,高也随着变化,这两种量的比值底面积一定,所以成正比例,不成反比例.
解:长方体的体积÷高=长方体的底面积,
长方体的底面积一定,也就是这两种量的比值一定,所以成正比例;
故答案为:×.
【点评】此题考查辨识成正比例的量,只要两种相关联的量比值一定,就成正比例.
19.√
20.√
【解析】
【分析】
判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例;从甲地到乙地距离一定,在距离一定时,时间和速度成反比例。
【详解】
因为从甲地到乙地距离一定,即速度×时间=距离(一定),时间和速度的积一定,所以一辆汽车从甲地到乙地所用的时间和速度成反比例说法正确。
故答案为:正确。
21.×
22.×
【解析】
【分析】
根据比例的基本性质进行分析即可。
【详解】
比例的两内项积=两外项积,相减差是0,所以原题说法错误。
【点睛】
本题考查了比例的基本性质,两內项积=两外项积,被减数=减数,差是0。
23.2∶1,2;7∶10,;4∶5,;1∶48,
【解析】
【分析】
根据化简比和求比值的方法计算即可。
【详解】
0.5∶0.25=0.5÷0.25=2∶1=2
∶=×=7∶10=
360千克∶0.45吨=360÷450=4∶5=
25厘米∶12米=25∶1200=1∶48=
【点睛】
本题考查了化简比和求比值,都可以用求比值法,结果区分开即可。
24.x= x=2.8
x=0.25 x=12
【解析】
【详解】
(1)x﹣x=
解:x=
x÷=÷
x=
(2)0.9×8﹣x=3
解:7.2﹣x=3
7.2﹣x+x=3+x
x+3=7.2
x+3﹣3=7.2﹣3
x=4.2
x÷=4.2÷
x=2.8
(3):x=16:9
解:16x=9×
16x÷16=9×÷16
x=0.25
(4):=x:4
解:x=4×
x÷=4×÷
x=12
25.(1)x=5.2;(2)x=12
【解析】
【分析】
(1)根据比例的意义列出比例,再根据比例的基本性质将比例转化为方程形式,解方程即可。
(2)根据比例的基本性质直接写出方程求解即可。
【详解】
(1)1.3∶2=x∶8
解:2x=8×1.3
2x=10.4
x=5.2
(2)24∶x=36∶18
解:36x=24×18
36x=432
x=12
【点睛】
本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐。
26.1500m
【解析】
【详解】
100÷5×4=80(米/分)
(100+80) ÷=1500(米)
27.(1)
(2)速度
(3)路程随着时间的增加而增加成正比例关系
(4)9小时
【解析】
【分析】
(1)根据表格中总价和数量的一一对应关系,在图中描点并连线。
(2)根据表格可知,速度一直是没有改变的。
(3)路程=速度×时间。两个相互关联的量,如果它们的比值是一定的,则它们的关系是正比例关系。
(4)在图中,找准720km所对应的时间。
【详解】
(1)路程和时间的关系在图中应是一条平滑的直线关系。
(2)速度一直没有改变为:80km/h。
(3)路程随着时间的增加而增加成正比例关系。
(4)由图可知,行驶720km所用的时间为9小时。
【点睛】
在掌握正比例与反比例概念的基础上,对价格公式进行变形,确定相关联的量的数量关系。
28.8小时
【解析】
【详解】
解:10÷=80000000(厘米)=800(千米)
800÷(55+45)=8(时)
答:两车经过8小时相遇.
29.10米
【解析】
【分析】
根据题意知道,同一时间,同一地点测得物体的高度与影子的长度的比值一定,即物体的高度与影子的长度成正比例,由此先假设出这棵树在地面上的影子对应的树的实际高度,根据比例关系,列出比例求出地面上的影子对应的树的高度。
【详解】
解:设这棵树高x米。
2.5∶x=0.5∶2
0.5x=5
x=10
答:这棵树高10米。
【点睛】
明确同一时间,同一地点测得物体的高度与影子的长度的比值一定是解决本题的关键。
30.192块
【解析】
【分析】
小明家客厅的总面积是一定的,因此方砖面积与所需块数成反比,即方砖面积×块数=客厅面积(一定),据此求解。
【详解】
240×8÷10=192(块)
答:需要192块。
【点睛】
本题考查反比例的简单应用,当两种相关联的量,一种量变化,另一重量也随着变化,当它们对应的乘积一定时,这两种量成反比例关系,用式子表示为(一定)。时间/小时
2
4
6
8
10
路程/km
160
320
480
640
800
相关试卷
这是一份2021年小升初数学总复习《图形与变换》专项训练卷 全国通用版(含答案),共15页。试卷主要包含了选择题,填空题(共31分),判断题,计算题,作图题,解答题(共25分)等内容,欢迎下载使用。
这是一份2021年小升初数学总复习《图形的体积》专项训练卷 全国通用版(含答案),共14页。试卷主要包含了选择题,填空题(共25分),判断题,计算题(共18分),作图题(5分),解答题(共42分)等内容,欢迎下载使用。
这是一份2021年小升初数学总复习《式与方程》专项训练卷 全国通用版(含答案),共10页。试卷主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。