2021年九年级数学二轮复习:二次函数压轴题综合强化练习(Word版无答案)
展开这是一份2021年九年级数学二轮复习:二次函数压轴题综合强化练习(Word版无答案),共12页。试卷主要包含了如图1,抛物线与轴交于点等内容,欢迎下载使用。
1、已知抛物线y=-x2+mx-m+2.
(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=,试求m的值;
(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 △MNC的面积等于27,试求m的值.
2、如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.
(1)求二次函数的解析式;
(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.
3、如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.
(1)求抛物线的解析式;
(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a的取值范围;
(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.
4如图,抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点,与y轴交于点C.
(1)求此抛物线的函数表达式;
(2)已知点D为y轴上一点,点D关于直线BC的对称点为D′.
①当点D′刚好落在第四象限的抛物线上时,求点D的坐标;
②点P在抛物线上,连接PD、PD′、DD′,是否存在点P,使△PDD′为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
5、如图,二次函数y=﹣x2+4x+5图象的顶点为D,对称轴是直线1,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.
(1)点D的坐标是 ;
(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P、Q,使得△DPQ与△DAB相似.
①当n=时,求DP的长;
②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围 .
6、如图1,抛物线与轴交于点、,与轴交于点,且OB=OC.
(1)试求抛物线的解析式及其对称轴;
(2)点D、E是对称轴上的两个动点,且,点D在点E的上方,试求四边形ACDE的周长的最小值;
(3)如图2,点P为抛物线上一点,连接CP,当直线CP把四边形CBPA的面积分为两部分时,试求点P的坐标。
7、如图,在平面直角坐标系中,直线y=-eq \f(1,2)x+2与x轴交于点B,与y轴交于点C,抛物线y=-eq \f(1,4)x2+bx+c经过B,C两点,与x轴交于另一点A.点P为抛物线上任意一点,过点P作PM⊥x轴交BC于点M.
(1)求抛物线的函数表达式;
(2)当△PCM是直角三角形时,求点P的坐标;
(3)如图②,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于点E、F,设抛物线对称轴与x轴的交点为Q,当直线P′M经过点Q时,求EF的长.
8、如图,抛物线与直线相交于两点,且抛物线经过点.
(1)求抛物线的解析式;
(2)点是抛物线上的一个动点(不与点、点重合),过点作直线轴于点,交直线于点.
①当时,求点坐标;
② 是否存在点使为等腰三角形,若存在请直接写出点的坐标,若不存在,请说明理由.
9、如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点坐标;
(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;
(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?
10、如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
(1)求抛物线的解析式;
(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.
11、如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
12、抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
13、如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1
(1)求此抛物线的解析式以及点B的坐标.
(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPN为矩形.
②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
14、如图1,抛物线:与:相交于点O、C,与分别交x轴于点B、A,且B为线段AO的中点.
(1)求的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.
15、如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).
(1)点A的坐标为 ,点B的坐标为 ,线段AC的长为 ,抛物线的解析式为 .
(2)点P是线段BC下方抛物线上的一个动点.
①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.
②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.
相关试卷
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案),共13页。试卷主要包含了B两点.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习六(含答案),共16页。试卷主要包含了B两点,与y轴交于点C.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习九(含答案),共15页。试卷主要包含了设点P的横坐标为m,等内容,欢迎下载使用。