初中数学1.3 有理数的大小教案
展开有理数的大小比较
一、教材内容分析
有理数大小的比较是紧接在有理数、数轴和绝对值之后学习的。并且数轴和绝对值又是有理数大小比较这一新知识的根基和生长点。两者分别从形的角度和数的角度研究问题,得到了有理数大小的比较法则,并且“数”的抽象又是借助于“形”的直观,因此数轴是“有理数大小比较”中贯穿始终的主线。 设计意图和整体思路
以数轴比较法作为基本的比较法则,同时让学生感觉到这一方法虽然比较简单好用,但由于每一次有理数的比较都要画数轴,操作起来虽然不难但比较麻烦,不利于提高解题的速度。从而让学生感觉到有必要寻求另一种操作更加简便的方法。于是引导学生思考有理数的大小比较会出现哪几种情况,经过讨论不难得到共有五种情况:①正数与零;②正数和负数;③负数和零;④正数和正数;⑤负数与负数。然后,老师和学生共同根据数轴对这五种情况一一进行分析,从而得到“正数都大于零,负数都小于零,正数大于负数”,“两个负数比较大小,绝对值大的数反而小”。从而实现学生会用数形结合的方法思考并解决问题。
二、学习目标
1.知识目标:会比较任意两个有理数的大小,特别是会用绝对值比较两个负数的大小。
2.能力目标:培养并提高学生运用所学知识解决问题的能力,学会用数形结合方法解决问题。
3.情感目标:体会数学中转化思想的作用,培养对数学的学习兴趣。
三、学习重、难点
比较两个有理数的大小,尤其是两个负数的大小。
四、教学方法:数形结合 探究交流
五、知识准备:
1.把有理数-3,2.5,-5,4,-31,0在数轴上表示出来。
2.求下列各数的绝对值。
-3, 3.14, 0, -4
3.思考:
(1)我们知道,同一温度计上不同时刻显示的温度,液面高的总比液面低的表示的温度。
(2)类比温度计,数轴就像一枝水平放置的温度计,数轴上表示的两个数,右边的数总比左边的数大。
(说明:用问题指导学生预习,通过学生预习,使学生初步感知本节课将要学
习的新知识)
六、教学过程:
(一).情 境 引 入 生活中,我们每天都会谈及温度,比如以下是某天我国5个城市的最低气温:
哈尔滨:-20 ℃ 北京:-10℃
武汉:5℃ 上海:0℃ 广州:10℃
比较这一天下列两个城市间气温的高低:
广 州——上 海 上 海——北京
北 京——哈尔滨 哈尔滨——武汉
武 汉——广 州
其实这个问题就可以归结为比较有理数-20,-10,5,0,10的大小,我们已经能够比较两个正数的大小及正数与0的大小,引入负数以后,在有理数范围内,怎样比较数的大小呢?这节课我们就来学习有理数的大小比较。
(二)合作探究新知
探究一:
某天我国5个城市的最低气温分别是-20℃,-10℃,5℃,0℃,10℃。
(1)请你按照由低到高的顺序把不同时刻的气温排列出来。
(2)它们在温度计上对应的位置有什么规律?
结论:(同一温度计上不同时刻显示的温度,液面高的总比液面低的表示的温度高。)
(3)把-20,-10,5,0,10表示在数轴上,这些数的大小与其在数轴上的点的位置有什么关系?
结论:(类比温度计,数轴就像一枝水平放置的温度计,数轴上表示的两个数,右边的数总比左边的数大。)
(4)在数轴上标出表示5,0,-4,-1的点,并比较它们的大小。
说明:这里放开学生,让他们独立思考后,与同学讨论形成规范的语言归纳发现的结论,利用数轴比较大小,体会使用数与形相结合的方法解决问题。
探究二:
利用数轴比较有理数大小比较简单好用,但每次比较都要画数轴操作起来比较麻烦,不利于提高解题的速度,因此老师觉得同学们有必要寻求另一种操作更简便的方法,同学们可以先试想以下,有理数的大小比较会出现哪些情况呢?
同学讨论互相补充之后,不难发现共有五种:①正数与零比较大小;②负数和零比较大小;③正数和负数比较大小;④正数和正数比较大小;⑤负数与负数比较大小。
(1) 思考:正数与正数的大小可以用以前的方法快速比较,怎样能快速比 较正数、负数、0的大小呢?
温馨提示:正数、负数、0在数轴上的位置有何特点?根据这一特点我们可以发现、归纳出:
正数 > 0 , 0 >负数 ,正数 > 负数
(2) 怎样比较两个负数的大小呢?
做一做
(A) 在数轴上表示下列各数,并比较它们的大小:
-1.5, -3, -1, -5;
(B)求出⑴中各数的绝对值,并比较它们的大小;
(C)你发现了什么?
从而得出两个负数的大小与其绝对值的关系是: 两个负数比较大小,绝对值大的反而小。
(三)巩固新知
比较下列每对数的大小,并说明理由:
(1)1与-10 (2)-0.001与0
(3) -与-
(四)课堂小结
(1)有理数的大小比较 :正数与0的大小比较 ,负数与0的大小比较 ,正数与负数的大小比较。
(2)负数与负数的大小比较(重点)。
(五)作业布置:P15习题 1、2题。
七、教学反思
这节课上完后,本人结合上课的实际情况,各位听课老师的建议及教学设计做了一些分析和改进工作。 以下是本节课的设计思想:本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法。⑴利用数轴比较大小;⑵利用绝对值比较大小。本节课的教学目标是让学生掌握这两种方法。在教用数轴比较有理数大小的方法时,引入是借助对温度高低的排列,初步感知有理数的大小排列。再让学生把这些数表示在数轴上,可以看到表示它们的各点是从左到右的顺序,由此引出利用数轴比较有理数大小的规定:“在数轴上,左边的数小于右边的数。”在这部分教学中,主要用到数形结合的思想方法。在讲解利用绝对值比较大小时,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论。从而得出利用绝对值比较有理数大小的方法。这节课的重点是利用绝对值比较两个负数的大小。难点是利用绝对值比较两个异分母负数大小;这是本节课较难的部分,为了解决难点,特别要让学生清楚地了解进行比较时的过程:⑴先求出两个负数的绝对值。⑵比较两个绝对值的大小(要通分,化为同分母分数)。⑶根据绝对值大的负数反而小的结论判断这两个负分数的大小。
上完这节课后,感觉到本节课还有不少地方设计得不好。结合实际,我的反思如下:从学生完成的练习分析,学生对课本的知识掌握程度不错,能运用两种方法判断有理数的大小,但仍有不足之处:
⒈在教学中,过多地推理概括有理数比较大小的两种方法,缺少让学生发表自己意见,与同伴合作交流的机会。
2.教学的预见性还不够,时间控制的不好,学生练习时间不够充分。
3.学生对比较两个负分数的大小,感到比较困难。它既用到新学的两个负数比较大小的结论,又联系到两个分数比较大小的问题,学生往往只做一次比较,比较完两个绝对值的大小后,就得出结论了。 教学设计的改进:
⒈对于难点的处理,可以学生讨论、讲解思路,加强学生课堂上自主学习的能力。 ⒉练习方面,多设计几题学生易错的题,让学生发现问题并加以改正,使学生加深印象。 3.习题的设计要更加细心,层次分明。
初中数学沪科版七年级上册1.3 有理数的大小教案: 这是一份初中数学沪科版七年级上册1.3 有理数的大小教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
数学沪科版1.3 有理数的大小教学设计: 这是一份数学沪科版1.3 有理数的大小教学设计,共2页。教案主要包含了情感,巩固练习,能力拓展,课堂小结等内容,欢迎下载使用。
沪科版1.3 有理数的大小教学设计及反思: 这是一份沪科版1.3 有理数的大小教学设计及反思,共3页。教案主要包含了提出问题,引入新课,讲授新课,巩固新知,课堂练习,小结,课外作业等内容,欢迎下载使用。