初中数学华师大版九年级下册26.3 实践与探索教学设计
展开教学内容 | 27 .3 .1 实践与探索 | 本节共需4课时 本课为第1课时 | 主备人:佘中林 | |
教学目标 | 会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义. | |||
教学重点 | 会根据不同的条件,利用待定系数法求二次函数的函数关系式 | |||
教学难点 | 在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的实际问题 | |||
教具准备 | 投影仪,胶片. | 课型 | 新授课 | |
教学过程 | 初备 | 统复备 | ||
情境导入
| 生活中,我们会遇到与二次函数及其图象有关的问题,比如在2004雅典奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关.你知道二次函数在生活中的其它方面的运用吗? |
| ||
实践与 探索1 | 例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远?
解 如图,铅球落在x轴上,则y=0, 因此,. 解方程,得(不合题意,舍去). 所以,此运动员把铅球推出了10米. 探索 此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.
|
| ||
实践与 探索2 | 例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m. (1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m) 分析 这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题. |
| ||
小结 与作业 | 回顾与反思 确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式: (1)一般式:,给出三点坐标可利用此式来求. (2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求. 课堂作业: 在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2. 5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中? 家庭作业:《数学同步导学九下》P24 随堂演练 |
| ||
教学后记
| ||||
初中华师大版26.3 实践与探索教案: 这是一份初中华师大版26.3 实践与探索教案,共6页。教案主要包含了教学目标,重点与难点,教学过程等内容,欢迎下载使用。
2021学年26.3 实践与探索教案设计: 这是一份2021学年26.3 实践与探索教案设计,共3页。教案主要包含了出示学习目标,新知探究,解疑合探,当堂训练,中考链接,全课总结,作业设计等内容,欢迎下载使用。
华师大版九年级上册22.3 实践与探索教案: 这是一份华师大版九年级上册22.3 实践与探索教案,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明等内容,欢迎下载使用。