初中数学青岛版七年级下册8.2 角的比较教案
展开1.会用叠合方法比较两个角的大小,会用“=”、“<”、“>”表示两个角的大小关系;
2.了解角的和、差、倍、分,会用图形和符号语言表示角的和、差、倍、分关系;
3.理解角的平分线的概念并能利用概念解决简单问题。
二、教与学重点难点:
角平分线概念的理解及简单应用。
三、教与学方法:
自主探究、合作交流
四、教与学过程:
(一)情境导入:
1、比较两条线段长短的方法有_________和________。
2、角的度量单位是什么?你会用量角器度量角吗?量出下列各角的度数。
(二)探究新知:
1.实验与探究:
(1)请看课本7页图8-8,我们能类似于线段长短的比较方法来比较他们的大小吗?
(2)我们怎样使两个角叠合呢?
(3)当用重叠法比较两个角的大小时,应做到_______重合与_______重合。
2.合作交流
(1)如果O’B’与OB也重合,那么两个角相等。记作∠A’O’B’=∠AOB(图8-8-1)。
(2)如果O’B’落在∠ABC的外部,那么∠A’O’B’大于∠AOB,记作∠A’O’B’>∠AOB(图8-8-2)
O
A
B
C
(3)如果O’B’落在∠AOB的内部,那么∠A’O’B’小于∠AOB。 记作∠A’O’B’<∠AOC(图8-8-3)
(4)我们可以用一个点平分一条线段,我们可以用一条射线平分一个角吗?
这条射线满足什么条件?
(定义:从一个角的顶点,引出一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.)
几何语言表述:
如图OC平分AOB,那么∠AOC=____
∠AOC=( )∠AOB ∠BOC=( )∠AOB
∠AOB=____∠AOC,∠AOB=____∠BOC
3.提高创新
我们可以用对折的方法找出线段的中点,能用对折的方法可以找出角的平分线吗?请同学们做练习:
按下列步骤进行操作:(1)在半透明的纸上画一个角;(2)折纸,使角的两边重合;(3)把纸展开,以点O为端点,沿折痕画射线OP∠AOP和∠BOP相等吗?射线OP是∠AOB的平分线吗?
4.精讲点拨:
如图,在∠AOC的内部画射线OB,在∠AOC的外部画射线OD,∠AOC是哪两个角的和?∠BOD是哪两个角的和?当∠AOB=∠COD时,你能找到其他相等的角吗?
解:∠AOC=∠AOB+∠BOC
(三)学以致用:
1.角的大小关系有几种?分别是 , , ;
分别用符号 、 、 。
2、点P在∠MAN的内部,现有以下4个等式:
①∠MAP=∠NAP②∠NAP= ∠MAN ③∠MAP=∠NAP ④∠MAN=2∠MAP
其中可以表示AP为角平分线的等式有
A、4个 B、3个 C、2个 D、1个( )
3、下面说法错误的是( )
A、点B是线段AC的中点。则BC=AC
B、若AO=OB,则O点是线段AB的中点
C、若AO=OB=AB,则O点是线段AB的中点。
D、若OC平分AOB,则AOC=∠BOC=AOB
4、已知: AOB=60,OC是 AOB内部的一条射线,射线OM平分AOC,射线ON平分COB,求: MON的度数.
(四)达标测评:
1、如图,OM、ON分别是∠BOC、∠AOC的平分线,
∠AOB=84°
(1)∠MON的度数为 ;
(2)当OC在∠AOC的内部绕点O旋转时,其他条件不变,∠MON的大小 (填“改变”或“不变”)
2、在第1题的图中,如果∠AON=∠BOM,OC平分∠MON,那么图中除了∠AON=∠BOM外,相等的角还有()
A、1对B、2对C、3对D、4对
3.如图,OB是∠AOC的平分线,OD是∠COE的平分线。
(1)若∠AOC=800 ,求∠BOC的度数;
(2)若∠AOC=800 ,∠COE=500,求∠BOD的度数。
初中数学青岛版七年级下册11.5 同底数幂的除法教学设计及反思: 这是一份初中数学青岛版七年级下册11.5 同底数幂的除法教学设计及反思,共4页。教案主要包含了课 题,学情分析,学习目标,教法及学法,教学准备,教学过程,板书设计等内容,欢迎下载使用。
初中数学青岛版七年级下册8.4 对顶角教案设计: 这是一份初中数学青岛版七年级下册8.4 对顶角教案设计,共4页。教案主要包含了课堂小结,作业布置等内容,欢迎下载使用。
初中数学青岛版七年级下册第8章 角8.5 垂直教学设计: 这是一份初中数学青岛版七年级下册第8章 角8.5 垂直教学设计,共7页。教案主要包含了知识回顾,导入新课,学习过程,回顾与小结,挑战自我,当堂检测,布置作业等内容,欢迎下载使用。