所属成套资源:人教版数学八年级下册全册教学设计
人教版八年级下册18.2.2 菱形教案设计
展开
这是一份人教版八年级下册18.2.2 菱形教案设计,共8页。教案主要包含了研读教材,解读目标,知识梳理,定理证明,典型例题,合作交流,小结,课堂练习,目标达成训练等内容,欢迎下载使用。
掌握菱形概念,知道菱形与平行四边形的关系.
理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
通过运用菱形知识解决具体问题,提高分析能力和观察能力.
根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
重点、难点
教学重点:菱形的性质1、2.
教学难点:菱形的性质及菱形知识的综合应用.
教学过程
一、研读教材,解读目标:
1、 叫做菱形。菱形是 的平行四边形。
2、探究菱形的性质,并用模式表述菱形的特殊性质:
3、解析教材97页探究与98页例题2与练习题1、2,102页习题5、11、12
二、知识梳理
有一组邻边相等的平行四边形叫菱形.与一般平行四边形相比,菱形具有哪些性质?
定理: (菱形的边) (菱形的角)
定理: ______________ (菱形的对角线)
三、定理证明:(小组合作,先交流命题证明方法和步骤,然后自己完成证明再与组长交流)
四、典型例题
例3. 如图3个全等的菱形构成的活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?
五、合作交流
1.证明:菱形的面积是它两条对角线长的乘积的一半.
2.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.
六、小结
菱形的边和对角线有不同于一般的平行四边形的性质,有关菱形的几何计算问题可以化为_______三角形(_____三角形、等腰三角形),利用特殊三角形的性质来计算。
七、课堂练习
1.己知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为 .
2.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,这个菱形的边长是________cm.
3.已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为______cm.
4.四边形ABCD是菱形,∠ABC=120°,AB=12cm,则∠ABD的度数为____ , ∠DAB的度数为______;对角线BD=_______,AC=_______;菱形ABCD的面积为_______.
八、目标达成训练
1.下列图形中,即是中心对称图形又是轴对称图形的是 ( )
A.等边三角形B.菱形C.等腰梯形D.平行四边形
2.如图,在菱形ABCD中,AB = 5,∠BCD = 120°,则对角线AC等于( )
A.20 B.15 C.10 D.5
3.如图2,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )
A.10cm2B.20cm2C.40cm2D.80cm2
A
D
E
P
C
B
F
A
B
E
F
C
D
A
B
C
D
第3题 第5题 第6题 第7题
4.菱形的两条对角线长分别为6和8,则它的面积为________,周长为_________。
5.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( )
A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形
C.四边形AMON与四边形ABCD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形
6.(选做,09杭州)如图,在菱形ABCD中,∠A=110°,E,F
分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A.35° B.45° C.50° D.55°
7.(选做,07咸宁)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB于点F,F为垂足,连接DE,则∠CDE=_________
8.求证:菱形的对角线的交点到各边的距离相等。
18.2.2 菱形(二)
教学目的:
理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
重点、难点
教学重点:菱形的两个判定方法.
教学难点:判定方法的证明方法及运用.
教学过程
一:复习:菱形有哪些特殊性质?
边:__________________________;______________________________
角:__________________________;______________________________
对角线:_____________________________;___________________________________
二、学习新知
目标一:会用菱形的定义判定一个四边形是否是菱形,并会用该种方法进行有关的证明.
(菱形的判定方法一)菱形的定义:
有 的 叫做菱形.
2.用符号语言可以表示为:
∵四边形ABCD是 四边形 ∵ ___ =____, ∴□ ABCD是菱形
3.如图在△ABC中,AD平分∠BAC交BC于D点,过D作DE∥AC交AB于E点, 过D作DF∥AB交AC于F点.
求证:(1)四边形AEDF是平行四边形 (2)∠2﹦∠3 (3)四边形AEDF是菱形
目标二:探究并掌握菱形的判定方法二
1.( 画图)自学99页最后三行的画图过程,
用圆规画出菱形ABCD,图画在右边(保留作图痕迹)
2.你发现四边形ABCD四边的关系是:
3.(猜想)四边相等的四边形ABCD是一个_____形.
4.(证明)利用上图证明:“四边相等的四边形是菱形”
已知:如上图,在四边形_______中,____=____=____=____
求证:四边形ABCD是_____.
证明:
5.(总结)由上写出菱形的判定方法二:_______ .
利用上图用符号语言表示为:在四边形ABCD中,
∵ ____=____=____=____ ∴四边形ABCD是 形
C
B
D
A
目标三:探究并掌握菱形的判定方法三
阅读99页“探究”,利用自制的学具探究菱形的判定方法并完成下面各题
1.由“在一长一短的木条中点处固定一个小钉”可知: = , =
∴四边形ABCD是 四边形
2.转动十字,当∠_____= °时即___ ⊥ ___时,四边形变成了菱形.
3. (猜想)对角线互相____ 的平行四边形是菱形.
4.请利用下图证明你的猜想:
已知:如图,在□ABCD中,AC和BD是对角线,并且AC⊥BD于点O,求证:□ABCD是菱形.
5.总结写出菱形判定方法三:
利用上图用符号语言可以表示为:∵四边形ABCD是平行四边形,∵AC___BD,∴□ABCD是菱形
目标四:利用菱形判定方法进行计算和证明
1.自学99页例三完成下题“在□ABCD中,对角线AC和BD相交于点O,并且AB=9,OB=6,OA=3.求证:(1)AC⊥BD (2)□ABCD是菱形吗?说说你的理由. (3)求四边形ABCD的面积.
2.判断题,对的画“√”错的画“×”
(1).对角线互相垂直的四边形是菱形( )
(2).一条对角线垂直另一条对角线的四边形是菱形( )
(3)..对角线互相垂直且平分的四边形是菱形( )
(4).对角线相等的四边形是菱形( )
三、小结:菱形的常用判定方法
四:拓展延伸
1.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?
求证:(1)四边形ABCD是平行四边形
(2) 过A作AE⊥BC于E点, 过A作AF⊥CD于F.用等积法说明BC=CD.
(3) 求证:四边形ABCD是菱形.
2.已知:如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形。
3. 如图,AC⊥BC,AE平分∠CAB,CD⊥AB,EF⊥AB,连接FG,求证:CEFG为菱形.
相关教案
这是一份数学八年级下册18.2.2 菱形教学设计,共2页。
这是一份人教版八年级下册18.2.2 菱形教案,共16页。教案主要包含了教学目标,教学重难点,教具学具准备,教学过程,作业等内容,欢迎下载使用。
这是一份人教版八年级下册18.2.2 菱形教案及反思,共4页。教案主要包含了知识回顾,学习过程,练习A等内容,欢迎下载使用。