初中数学人教版八年级下册18.2.3 正方形教案
展开1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2. 理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
重点、难点
教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
二.学习新知
自学教材100-101页,落实:
释疑提高
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
A
B
C
D
E
F
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
已知:如图,四边形ABCD为正方形,E、F分别
为CD、CB延长线上的点,且DE=BF.
求证:∠AFE=∠AEF.
4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,
求∠EAD与∠ECD的度数.
四、课后练习
1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.
求证:EA⊥AF.
2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.
18.2.3 正方形学案
一、温故知新
1.有一组邻边____ __,且有一个角____ __的平行四边形是正方形。
2.正方形的四边____ __,四角____ __,对角线____ __且____ __;正方形既是矩形,又是____ _;既是轴对称图形,又是____ ______ __。
3.如图正方形ABCD的边长为8,DM=2,N为AC上一点,则DN+MN的最小值为 .
4.如图,正方形ABCD边长为2,两对角线交点为O,OEFG也为正方形,则图中阴影部分面积为 .
5.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为 .
6. 如图,已知正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的值是 .
二、学习新知
作业精编55页例1、例2(独立写出过程)
三、释疑提高
1.如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE.
2. 如图,正方形ABCD中,E为BC上一点,DF=CF,DC+CE =AE,求证:AF平分∠DAE.
3.如图,BF平行于正方形ADCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,求∠BCF.
四、小结归纳
五、巩固检测: 性质
判定方法
矩形
边:
角:
对角线:
对称性:
1.
2.
3.
菱形
边:
角
对角线:
对称性:
1.
2.
3.
性质
判定方法
正方形
边:
角
对角线:
对称性:
人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形教案: 这是一份人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形教案,共6页。
2020-2021学年18.2.3 正方形教学设计及反思: 这是一份2020-2021学年18.2.3 正方形教学设计及反思,共2页。教案主要包含了创设情境独立思考,答疑解惑我最棒,合作学习探索新知,归纳总结巩固新知等内容,欢迎下载使用。
人教版八年级下册18.2.3 正方形第1课时教案及反思: 这是一份人教版八年级下册18.2.3 正方形第1课时教案及反思,共4页。教案主要包含了自主预习,合作解疑,限时检测1.正方形的定义等内容,欢迎下载使用。