2020-2021学年北师大新版九年级上册数学期末复习试卷(word解析版)
展开
这是一份2020-2021学年北师大新版九年级上册数学期末复习试卷(word解析版),共23页。试卷主要包含了如图所示几何体的左视图正确的是,若,则的值为等内容,欢迎下载使用。
2020-2021学年北师大新版九年级上册数学期末复习试卷
一.选择题(共10小题,满分20分,每小题2分)
1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于( )
A.3 B.2 C.1 D.2
2.如图所示几何体的左视图正确的是( )
A. B. C. D.
3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”
B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数
C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃
4.一元二次方程x2﹣2x+1=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )
A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2
6.若,则的值为( )
A.1 B. C. D.
7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为( )
A.4 B.5 C.6 D.8
8.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD=2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是( )
A.①③④ B.②③④ C.①②③ D.①②④
9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )
A.点B坐标为(5,4) B.AB=AD
C.a=﹣ D.OC•OD=16
10.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为( )
A. B. C. D.
二.填空题(共6小题,满分18分,每小题3分)
11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为 米.
12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是 .
13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,
则两次摸出的球都是红球的概率是 .
14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为 .
15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为 .
16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE= .
三.解答题(共3小题,满分22分)
17.计算:2cos45°tan30°cos30°+sin260°.
18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.
(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是 .
(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.
19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE∥BD,BE与CE交于点E.
(1)求证:四边形OBEC是矩形;
(2)当∠ABD=60°,AD=2时,求BE的长.
四.解答题(共1小题,满分8分,每小题8分)
20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
五.解答题(共1小题,满分10分,每小题10分)
21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:
销售单价x(元)
12
14
16
每周的销售量y(本)
500
400
300
(1)求y与x之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
六.解答题(共3小题,满分34分)
22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.
(1)求反比例函数的解析式及点B的坐标;
(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.
23.【方法提炼】
解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.
【问题情境】
如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.
小明在分析解题思路时想到了两种平移法:
方法1:平移线段FG使点F与点B重合,构造全等三角形;
方法2:平移线段BC使点B与点F重合,构造全等三角形;
【尝试应用】
(1)请按照小明的思路,选择其中一种方法进行证明;
(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC的值;
(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连结DE分别交线段BC,PC于点M,N.
①求∠DMC的度数;
②连结AC交DE于点H,求的值.
24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.
(1)求二次函数的解析式;
(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;
(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.
参考答案与试题解析
一.选择题(共10小题,满分20分,每小题2分)
1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,
则p+q=2,
故选:B.
2.解:从几何体的左面看所得到的图形是:
故选:A.
3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;
B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;
C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;
D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;
故选:B.
4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,
故选:B.
5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;
故选:C.
6.解:∵,
∴=2=2﹣=;
故选:B.
7.解:作CE⊥x轴于E,
∵AC∥x轴,OA=2,OB=1,
∴OA=CE=2,
∵∠ABO+∠CBE=90°=∠OAB+∠ABO,
∴∠OAB=∠CBE,
∵∠AOB=∠BEC,
∴△AOB∽△BEC,
∴=,即=,
∴BE=4,
∴OE=5,
∵点D是AB的中点,
∴D(,2).
∵反比例函数y=(k>0,x>0)的图象经过点D,
∴k=×2=5.
故选:B.
8.解:∵中线AD,BE相交于点F,
∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;
∵EG∥BC,
∴△BDF∽△EGF,
∴==2,
∴BD=2GE,①正确;
∵AF=2FD,
∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,
∵EG∥BC,AE=CE,
∴△AGE∽△ADC,=,
∴=()2=,
∴△AGE的面积=△ADC的面积△ABC的面积,
∴△AGE与△BDF面积不相等,③不正确;
∵BD=CD,AE=CE,
∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,
∴△ABD的面积=△BCE的面积,
∴△ABD的面积﹣△BDF的面积=△BCE的面积
﹣△BDF的面积,
即△ABF与四边形DCEF面积相等,④正确;
故选:D.
9.解:∵抛物线y=ax2+bx+4交y轴于点A,
∴A(0,4),
∵对称轴为直线x=,AB∥x轴,
∴B(5,4).
故A无误;
如图,过点B作BE⊥x轴于点E,
则BE=4,AB=5,
∵AB∥x轴,
∴∠BAC=∠ACO,
∵点B关于直线AC的对称点恰好落在线段OC上,
∴∠ACO=∠ACB,
∴∠BAC=∠ACB,
∴BC=AB=5,
∴在Rt△BCE中,由勾股定理得:EC=3,
∴C(8,0),
∵对称轴为直线x=,
∴D(﹣3,0)
∵在Rt△ADO中,OA=4,OD=3,
∴AD=5,
∴AB=AD,
故B无误;
设y=ax2+bx+4=a(x+3)(x﹣8),
将A(0,4)代入得:4=a(0+3)(0﹣8),
∴a=﹣,
故C无误;
∵OC=8,OD=3,
∴OC•OD=24,
故D错误.
综上,错误的只有D.
故选:D.
10.解:∵BF∥AD
∴△BNF∽△DNA
∴,
而BF=BC=1,AF=,
∴AN=,
又∵AE=BF,∠EAD=∠FBA,AD=AB,
∴△DAE≌△ABF(SAS),
∴∠AED=∠BFA
∴△AME∽△ABF
∴,
即:,
∴AM=,
∴MN=AN﹣AM=.
故选:C.
二.填空题(共6小题,满分18分,每小题3分)
11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,
∵他在某一时刻测得直立的标杆高1米时影长0.9米,
∴=,即=,
解得:AE=3m,
∴AB=AE+BE=3+1.2=4.2(m).
故答案为:4.2.
12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,
故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),
故答案为:(﹣2,﹣4).
13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,
则两次摸出的球都是红球的概率为;
故答案为:.
14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,
根据题意得:(30﹣3x)(24﹣2x)=480.
故答案为:(30﹣3x)(24﹣2x)=480.
15.解:∵E、F分别是AB、AD的中点,
∴EF=BD,
∵EF=5,
∴BD=10,
∵四边形ABCD为菱形,
∴AB=AD,
∵∠A=60°,
∴△ABD为等边三角形,
∴AB=BD=10,
∴菱形ABCD的周长=4×10=40,
故答案为:40.
16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:
∵AB=AC=9,AG⊥BC,
∴BG=CG,
∵BE⊥AB,CD⊥BC,
∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,
∴∠ABG=∠BDC,
∴tan∠ABG==tan∠BDC==2,
∴AG=2BG,BC=2CD,
设BG=x,则AG=2x,
在Rt△ABG中,由勾股定理得:x2+(2x)2=92,
解得:x=,
∴BC=2BG=,CD=BC=,
∴BD===9,
∵CF⊥BD,
∴△BCD的面积=BD×CF=BC×CD,
∴CF==,
∴DF===,
∵AB⊥BD,CF⊥BD,
∴CF∥AB,
∴△CFE∽△ABE,
∴=,即=,
解得:DE=3;
故答案为:3.
三.解答题(共3小题,满分22分)
17.解:原式=2×﹣××+()2
=﹣+
=.
18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,
∴小亮猜的结果是“正数”,那么小亮获胜的概率是;
故答案为:;
(2)根据题意画图如下:
共有9种等情况数,其中两次的结果都是“正数”的有4种,
∴小亮获胜的概率是.
19.(1)证明:∵BE∥AC,CE∥BD,
∴BE∥OC,CE∥OB,
∴四边形OBEC为平行四边形,
∵四边形ABCD为菱形,
∴AC⊥BD,
∴∠BOC=90°,
∴四边形OBEC是矩形;
(2)解:∵四边形ABCD为菱形,
∴AD=AB,OB=OD,OA=OC,
∵∠DAB=60°,
∴△ABD为等边三角形,
∴BD=AD=AB=2,
∴OD=OB=,
在Rt△AOD中,AO===3
∴OC=OA=3,
∵四边形OBEC是矩形,
∴BE=OC=3.
四.解答题(共1小题,满分8分,每小题8分)
20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.
由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.
在Rt△ADE中,∠AED=90°,
∴tan37°=≈0.75.
∴AE=40,
∵AB=57,
∴BE=17
∵四边形BCFE是矩形,
∴CF=BE=17.
在Rt△DCF中,∠DFC=90°,
∴∠CDF=∠DCF=45°.
∴DF=CF=17,
∴BC=EF=30﹣17=13.
答:教学楼BC高约13米.
五.解答题(共1小题,满分10分,每小题10分)
21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),
,得,
即y与x之间的函数关系式为y=﹣50x+1100;
(2)由题意可得,
w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,
∵a=﹣50<0
∴w有最大值
∴当x<16时,w随x的增大而增大,
∵12≤x≤15,x为整数,
∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,
答:销售单价为15元时,每周获利最大,最大利润是1750元.
六.解答题(共3小题,满分34分)
22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,
∴A(1,2)
把A(1,2)代入反比例函数y=,
∴k=1×2=2;
∴反比例函数的表达式为y=,
解得,,,
∴B(2,1);
(2)∵一次函数y=﹣x+3的图象与x轴交于点C,
∴C(3,0),
∵A(1,2),
∴AC==2,
过A作AD⊥x轴于D,
∴OD=1,CD=AD=2,
当AP=AC时,PD=CD=2,
∴P(﹣1,0),
当AC=CP=2时,△ACP是等腰三角形,
∴OP=3﹣2或OP=3+2
∴P(3﹣2,0)或(3+2,0),
当AP=CP时,△ACP是等腰三角形,此时点P与D重合,
∴P(1,0),
综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).
23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:
由平移的性质得:FG∥BH,
∵四边形ABCD是正方形,
∴AB∥CD,AB=BC,∠ABE=∠C=90°,
∴四边形BFGH是平行四边形,
∴BH=FG,
∵FG⊥AE,
∴BH⊥AE,
∴∠BKE=90°,
∴∠KBE+∠BEK=90°,
∵∠BEK+∠BAE=90°,
∴∠BAE=∠CBH,
在△ABE和△CBH中,,
∴△ABE≌△CBH(ASA),
∴AE=BH,
∴AE=FG;
②平移线段BC至FH交AE于点K,如图1﹣2所示:
则四边形BCHF是矩形,∠AKF=∠AEB,
∴FH=BC,∠FHG=90°,
∵四边形ABCD是正方形,
∴AB=BC,∠ABE=90°,
∴AB=FH,∠ABE=∠FHG,
∵FG⊥AE,
∴∠HFG+∠AKF=90°,
∵∠AEB+∠BAE=90°,
∴∠BAE=∠HFG,
在△ABE和△FHG中,,
∴△ABE≌△FHG(ASA),
∴AE=FG;
(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:
∴∠AOC=∠FDC,
设正方形网格的边长为单位1,
则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,
根据勾股定理可得:CF===,CD===2,DF===5,
∵()2+(2)2=52,
∴CF2+CD2=DF2,
∴∠FCD=90°,
∴tan∠AOC=tan∠FDC===;
(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:
则∠DMC=∠GDE,四边形DGBC是平行四边形,
∴DC=GB,
∵四边形ADCP与四边形PBEF都是正方形,
∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°
∴DC=AD=AP=GB,
∴AG=BP=BE,
在△AGD和△BEG中,,
∴△AGD≌△BEG(SAS),
∴DG=EG,∠ADG=∠EGB,
∴∠EGB+∠AGD=∠ADG+∠AGD=90°,
∴∠EGD=90°,
∴∠GDE=∠GED=45°,
∴∠DMC=∠GDE=45°;
②如图3﹣2所示:
∵AC为正方形ADCP的对角线,
∴∠DAC=∠PAC=∠DMC=45°,
∴AC=AD,
∵∠HCM=∠BCA,
∴∠AHD=∠CHM=∠ABC,
∴△ADH∽△ACB,
∴===.
24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;
故二次函数表达式为:y=x2﹣4x+3;
(2)①当AB为平行四边形一条边时,如图1,
则AB=PF=2,
则点P坐标为(4,3),
当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,
故:点P(4,3)或(0,3);
②当AB是四边形的对角线时,如图2,
AB中点坐标为(2,0)
设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,
即:=2,解得:m=2,
故点P(2,﹣1);
故:点P(4,3)或(0,3)或(2,﹣1);
(3)直线BC的表达式为:y=﹣x+3,
设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),
S四边形AEBD=AB(yD﹣yE)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,
∵﹣1<0,故四边形AEBD面积有最大值,
当x=,其最大值为,此时点E(,﹣).
相关试卷
这是一份北师大新版2020-2021学年九年级上册数学期末复习试题(Word版 含解析),共24页。试卷主要包含了下列方程中,一元二次方程共有,如图所示几何体的左视图正确的是,若,则的值为,如果点A,将抛物线2+1,反比例函数y=等内容,欢迎下载使用。
这是一份2020-2021学年北师大新版九年级上册数学期末复习试题1(Word版 含解析),共17页。试卷主要包含了下列计算正确的是,估算的值是在,计算﹣的结果是等内容,欢迎下载使用。
这是一份2020-2021学年北师大新版九年级上册数学期末复习试卷2(Word版 含解析),共20页。试卷主要包含了对于二次函数y=2,把函数y=,小亮根据x的取值等内容,欢迎下载使用。