初中数学北师大版九年级下册6 直线与圆的位置关系教学演示课件ppt
展开判定直线与圆的位置关系的方法有____种:
(1)根据定义,由_ _______________的个数 来判断;
(2)根据性质,由 _________________ 的关系来判断。
在实际应用中,常采用第二种方法判定。
圆心到直线的距离d与半径r
第一步: ;第二步: ;第三步: .
比较垂线段与半径的大小
直线和圆的位置关系: (用圆心O到直线l的距离d与圆的半径r的关系来区分)
4)若AB和⊙O不相交,则 .
上面的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?
如图,直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说说你的理由.
直径AB垂直于直线CD.
圆的对称性已经在你心中要落地生根.
小颖的理由是:∵右图是轴对称图形,AB是对称轴,∴沿直线AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°.
小亮的理由是:直径AB与直线CD要么垂直,要么不垂直.
假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M,
则OM
证明两线垂直作过切点的半径
∵CD是⊙O的切线,A是切点 AB是⊙O的直径, ∴CD⊥AB.
例1.已知Rt△ABC的斜边AB=8cm,直角边AC=4cm.
(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?
模型“双垂直三角形”你可曾认识.
解:(1)过点C作CD⊥AB于D.
∵AB=8cm,AC=4cm.
(2)以点C为圆心,分别以2cm,4cm为半径作两个圆,这两个圆与AB分别有怎样的位置关系?
∴当r=2cm时,d>r,AB与⊙C相离;
当r=4cm时,d<r,AB与⊙C相交;
例2:如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于C,若∠A=25°,求∠D度数。
有切点,连半径,得垂直。
1.如图,已知∠BAC=30度,M为AC上一点,且AM=5cm, 以M为圆心、r为半径的圆与直线AB有怎样的位置关系? 为什么?
(3) r=2.5cm
2.已知⊙A的直径为6,点A的坐标为(-3,-4), 则x轴与⊙A的位置关系是_____, y轴与⊙A的位置关系是_____。
3. 如图, ⊙M与X轴相交于点A(2,0)B(8,0)与Y轴相切于点C,则圆心M的坐标是多少?
4.已知⊙O的半径为2,直线l上有一点P,PO=2, 则直线l与⊙O的位置关系是 .
5.一枚直径为d的硬币沿直线滚动一圈.圆心经过的 距离是多少?.
提示:硬币滚动一圈,圆心经过的路经是与直线平行的一条线段,其长度等于圆的周长.
在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,r为半径作圆。①当r满足 时, 直线AB与⊙C相离。②当r满足 时,直线AB与⊙C相切。③当r满足 时,直线AB与⊙C相交。
④当r满足 时, 线段AB与⊙C只有一个公共点。
切线的性质定理: _________常添辅助线:___________。
圆的切线垂直于过切点的半径
有切线,连半径,得垂直
如图,CA、CB分别切⊙O于B、A.∠C=76° 求∠D。
北师大版九年级下册第三章 圆6 直线与圆的位置关系课堂教学课件ppt: 这是一份北师大版九年级下册第三章 圆6 直线与圆的位置关系课堂教学课件ppt,文件包含36直线和圆的位置关系第1课时pptx、北师大版中学数学九年级下册第三章圆36直线和圆的位置关系第1课时教学详案docx、6直线和圆的位置关系docx等3份课件配套教学资源,其中PPT共19页, 欢迎下载使用。
初中数学北师大版九年级下册6 直线与圆的位置关系评课课件ppt: 这是一份初中数学北师大版九年级下册6 直线与圆的位置关系评课课件ppt,共4页。
北师大版九年级下册第三章 圆6 直线与圆的位置关系课文配套ppt课件: 这是一份北师大版九年级下册第三章 圆6 直线与圆的位置关系课文配套ppt课件,共7页。