- 第10章概率10.1.3古典概型学案含解析 学案 21 次下载
- 第10章概率10.1.4概率的基本性质 课件 课件 32 次下载
- 第10章概率10.2事件的相互独立性 课件 课件 31 次下载
- 第10章概率10.2事件的相互独立性学案含解析 学案 21 次下载
- 第10章概率10.3.1频率的稳定性 课件 课件 29 次下载
数学必修 第二册10.1 随机事件与概率优秀学案及答案
展开10.1.4 概率的基本性质
学 习 任 务 | 核 心 素 养 |
1.通过实例,理解概率的性质.(重点、易混点) 2.掌握随机事件概率的运算法则.(难点) | 1.通过对概率性质的学习,培养数学抽象素养. 2.通过利用随机事件概率的运算法则求解随机事件的概率,培养数学运算素养. |
甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3.
问题:甲获胜的概率是多少?
知识点 概率的基本性质
性质1 对任意的事件A,都有P(A)≥0.
性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.
性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).
性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).
性质5 如果A⊆B,那么P(A) ≤P(B).
性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)= P(A)+P(B)-P(A∩B).
(1)设事件A发生的概率为P(A),事件B发生的概率为P(B),那么事件A∪B发生的概率是P(A)+P(B)吗?
(2)从某班任选6名同学作为志愿者参加市运动会服务工作,记 “其中至少有3名女同学”为事件A,那么事件A的对立事件是什么?
[提示] (1)不一定.当事件A与B互斥时,P(A∪B)=P(A)+P(B);当事件A与B不互斥时,P(A∪B)=P(A)+P(B)-P(A∩B).
(2)事件A的对立事件是“其中至多有2名女同学”.
1.思考辨析(正确的画“√”,错误的画“×”)
(1)若A与B为互斥事件,则P(A)+P(B)=1. ( )
(2)若P(A)+P(B)=1,则事件A与B为对立事件. ( )
(3)某班统计同学们的数学测试成绩,事件“所有同学的成绩都在60分以上”的对立事件为“所有同学的成绩都在60分以下”. ( )
[答案] (1)× (2)× (3)×
2.甲、乙两名乒乓球运动员在一场比赛中甲获胜的概率是0.2,若不出现平局,那么乙获胜的概率为( )
A.0.2 B.0.8 C.0.4 D.0.1
B [乙获胜的概率为1-0.2=0.8.]
3.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________.
[由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.]
4.若P(A∪B)=0.7,P(A)=0.4,P(B)=0.6,则P(A∩B)=________.
0.3 [因为P(A∪B)= P(A)+P(B)-P(A∩B),
所以P(A∩B)=P(A)+P(B)-P(A∪B)=0.4+0.6-0.7=0.3.]
类型1 互斥事件、对立事件的概率公式
及简单应用
【例1】 备战奥运会射击队的某一选手射击一次,其命中环数的概率如下表:
命中环数 | 10环 | 9环 | 8环 | 7环 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求该选手射击一次,
(1)命中9环或10环的概率;
(2)至少命中8环的概率;
(3)命中不足8环的概率.
[解] 记“射击一次,命中k环”为事件Ak(k=7,8,9,10).
(1)因为A9与A10互斥,所以P(A9∪A10)=P(A9)+P(A10)=0.28+0.32=0.60.
(2)记“至少命中8环”为事件B,则B=A8+A9+A10,又A8,A9,A10两两互斥,
所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.
(3)记“命中不足8环”为事件C.则事件C与事件B是对立事件.
所以P(C)=1-P(B)=1-0.78=0.22.
互斥事件、对立事件的概率公式的应用
(1)互斥事件的概率加法公式P(A∪B)=P(A)+P(B)是一个非常重要的公式,运用该公式解题时,首先要分清事件间是否互斥,同时要学会把一个事件分拆为几个互斥事件,然后求出各事件的概率,用加法公式得出结果.
(2)当直接计算符合条件的事件个数比较繁琐时,可间接地先计算出其对立事件的个数,求得对立事件的概率,然后利用对立事件的概率加法公式P(A)+P(B)=1,求出符合条件的事件的概率.
1.在数学考试中,小王的成绩在90分以上(含90分)的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下(不含60分)的概率是0.07.求:
(1)小王在数学考试中取得80分以上(含80分)成绩的概率;
(2)小王数学考试及格的概率(60分以上为合格,包含60分).
[解] 设小王的成绩在90分以上(含90分)、在80~89分、在60分以下(不含60分)分别为事件A,B,C,且A,B,C两两互斥.
(1)设小王的成绩在80分以上(含80分)为事件D,则D=A+B,
所以P(D)=P(A+B)=P(A)+P(B)=0.18+0.51=0.69.
(2)设小王数学考试及格为事件E,由于事件E与事件C为对立事件,
所以P(E)=1-P(C)=1-0.07=0.93.
类型2 互斥事件、对立事件的概率公式的综合应用
【例2】 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座时,
(1)求这四人恰好都坐在自己的席位上的概率;
(2)求这四人恰好都没坐在自己的席位上的概率.
1.若事件A和事件B为互斥事件,那么P(A),P(B),P(A∪B)有什么关系?
[提示] P(A∪B)=P(A)+P(B).
2.若事件A和事件B不是互斥事件,那么P(A),P(B),P(A∪B)有什么关系?
[提示] P(A∪B)= P(A)+P(B)-P(A∩B).
3.若事件A和事件B是对立事件,那么P(A),P(B)有什么关系?
[提示] P(A)+P(B)=1.
[解] 将A,B,C,D四位贵宾就座情况用下面图形表示出来:
如图所示,样本点的总数为24.
(1)设事件A为“这四人恰好都坐在自己的席位上”,
则事件A只包含1个样本点,所以P(A)=.
(2)设事件B为“这四个人恰好都没有坐在自己席位上”,
则事件B包含9个样本点,所以P(B)==.
求这四人恰好有1位坐在自己的席位上的概率.
[解] 由本例解析可知,设事件C为“这四个人恰有1位坐在自己席位上”,则事件C包含8个样本点,
所以P(C)==.
1.当事件个数没有很明显的规律,并且涉及的样本点又不是太多时,我们可借助树状图法直观地将其表示出来,这是进行列举的常用方法.树状图可以清晰准确地列出所有的样本点,并且画出一个树枝之后可猜想其余的情况.
2.在求概率时,若事件可以表示成有序数对的形式,则可以把全体样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,给问题的解决带来方便.
类型3 概率与统计的综合应用问题
【例3】 某高校为了制定培养学生阅读习惯,指导学生提高阅读能力的方案,需了解全校学生的阅读情况,现随机调查了200名学生每周阅读时间X(单位:小时)并绘制了如图所示的频率分布直方图.
(1)求了这200名学生每周阅读时间的中位数a(精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间在[6.5,7.5),[7.5,8.5)内的学生中抽取6名参加座谈会.
(ⅰ)你认为6个名额应该怎么分配?并说明理由;
(ⅱ)从这6名学生中随机抽取2人,求至多有1人每周阅读时间在[7.5,8.5)内的概率.
[解] (1)∵0.03+0.1+0.2+0.35=0.68>0.5,∴中位数a∈[8.5,9.5),由0.03+0.1+0.2+(a-8.5)×0.35=0.5,解得a=+8.5≈8.99.
(2)(ⅰ)应从每周阅读时间在[6.5,7.5)内的学生中抽取2名,从每周阅读时间在[7.5,8.5)内的学生中抽取4名.
理由:每周阅读时间在[6.5,7.5)内与每周阅读时间在[7.5,8.5)内是差异明显且不重叠的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层随机抽样的方法抽取样本,
∵两者频率分别为0.1,0.2,∴应按照1∶2的比例进行名额分配.
(ⅱ)设从每周阅读时间在[6.5,7.5)内的学生中抽取的2人为A1,A2,从每周阅读时间在[7.5,8.5)内的学生中抽取的4人为B1,B2,B3,B4,从这6人中随机抽取2人的所有样本点有15个,分别为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4).设“至多有1人每周读书时间在[7.5,8.5)内”为事件A,则A中有9个样本点,分别为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4).
∴至多有一人每周阅读时间在[7.5,8.5)内的概率为P(A)==.
解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.
2.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为“优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300)时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据:
(1)下面是根据统计数据得到的频率分布表,求出a,b的值,并估计该景区6月份游客人数的平均值.(同一组中的数据用该组区间的中点值作代表)
游客数量(单位:百人) | [0,100) | [100,200) | [200,300) | [300,400] |
天数 | a | 10 | 4 | 1 |
频率 | b |
(2)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
[解] (1)游客人数在[0,100)范围内的天数共有15天,故a=15,b==,游客人数的平均值为50×+150×+250×+350×=120(百人).
(2)从5天中任选2天,试验的样本空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共10个样本点,其中游客拥挤等级均为“优”的有(1,4),(1,5),(4,5),共3个,故所求概率为.
1.从集合{a,b,c,d,e}的所有子集中任取一个,若这个子集不是集合{a,b,c}的子集的概率是,则该子集恰是集合{a,b,c}的子集的概率是( )
A. B. C. D.
C [该子集恰是{a,b,c}的子集的概率为P=1-=.]
2.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=( )
A. B. C. D.
B [抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,
所以P(A)==,P(B)==,P(A∩B)==,
所以P(A∪B)=P(A)+P(B)-P(A∩B)=+-=,故选B.]
3.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35,0.30,0.25,则不命中靶的概率是________.
0.10 [“射手命中圆面Ⅰ”为事件A,“命中圆环Ⅱ”为事件B,“命中圆环Ⅲ”为事件C,“不中靶”为事件D,则A,B,C彼此互斥,故射手中靶的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.
因为中靶和不中靶是对立事件,故不命中靶的概率为P(D)=1-P(A∪B∪C)=1-0.90=0.10.]
4.一个电路板上装有甲、乙两根熔丝,甲熔断的概率为0.85,乙熔断的概率为0.74,两根同时熔断的概率为0.63,则至少有一根熔断的概率为________.
0.96 [设A=“甲熔丝熔断”,B=“乙熔丝熔断”,则甲、乙两根熔丝至少有一根熔断”为事件A∪B.
P(A∪B)=P(A)+P(B)-P(A∩B)=0.85+0.74-0.63=0.96.]
回顾本节知识,自我完成以下问题:
(1)概率的基本性质有哪些?
(2)公式P(A∪B)=P(A)+P(B)-P(A∩B)与P(A∪B)=P(A)+P(B)有什么关系?各自的适用条件是什么?
高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率导学案: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率导学案,共7页。学案主要包含了教学目标,自主学习,课内探究,当堂检测等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率导学案及答案: 这是一份高中数学人教A版 (2019)必修 第二册第十章 概率10.1 随机事件与概率导学案及答案
高中数学人教版新课标A必修33.1.3概率的基本性质学案及答案: 这是一份高中数学人教版新课标A必修33.1.3概率的基本性质学案及答案,共4页。