- 高端精品高中数学二轮专题-复数(带答案)教案 教案 3 次下载
- 高端精品高中数学二轮专题-集合教案 教案 3 次下载
- 高端精品高中数学二轮专题-集合(带答案)教案 教案 3 次下载
- 高端精品高中数学二轮专题-逻辑用语教案 教案 6 次下载
- 高端精品高中数学二轮专题-逻辑用语(带答案)教案 教案 6 次下载
高端精品高中数学二轮专题-复数教案
展开复数
知识梳理.复数
1.复数的有关概念
(1)复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中a,b分别是它的实部和虚部.若b=0,则a+bi为实数;若b≠0,则a+bi为虚数;若a=0且b≠0,则a+bi为纯虚数.
(2)复数相等:a+bi=c+di⇔a=c且b=d(a,b,c,d∈R).
(3)共轭复数:a+bi与c+di共轭⇔a=c,b=-d(a,b,c,d∈R).
(4)复数的模:
向量的模叫做复数z=a+bi(a,b∈R)的模,记作|z|或|a+bi|,即|z|=|a+bi|=.
2.复数的几何意义
(1)复数z=a+bi复平面内的点Z(a,b)(a,b∈R).
(2)复数z=a+bi(a,b∈R) 平面向量.
3.复数的运算
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(c+di≠0).
题型一.复数的有关概念
1.若z=(3﹣i)(a+2i)(a∈R)为纯虚数,则z=( )
A. B.6i C. D.20
2.已知i是虚数单位,若z(1+3i)=i,则z的虚部为( )
A. B. C. D.
3.已知复数(i虚数单位),则z( )
A. B.2 C.1 D.
4.若b+2i,其中a,b∈R,i是虚数单位,则a+b的值( )
A.﹣3 B.﹣1 C.1 D.3
5.设复数z满足z,则|z|=( )
A.1 B. C. D.2
6.设复数z满足i,则|z|=( )
A.1 B. C. D.2
7.若复数z满足z(1﹣i)=2i,则下列说法正确的是( )
A.z的虚部为i B.z为实数 C.|z| D.z2i
8.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是( )
A. B.± C.±i D.i
题型二.复数的几何意义
1.已知i是虚数单位,则复数在复平面内对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.设i是虚数单位,的复数z的共轭复数,z=1+2i,则复数z+i•在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=( )
A.0 B.﹣1 C.1 D.
4.已知复数z=3+4i3,则z的共轭复数在复平面内对应的点位于第 象限.
5.在复平面内,O是坐标原点,向量对应的复数是﹣2+i,若点A关于实轴的对称点为点B,则向量对应的复数的模为 .
6.已知i为虚数单位,且复数z满足,则复数z在复平面内的点到原点的距离为( )
A. B. C. D.
题型三.复数的指数幂运算
1.若复数z(i为虚数单位),则复数在复平面上对应的点所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知a为实数,若复数z=(a2﹣1)+(a+1)i为纯虚数,则的值为( )
A.1 B.0 C.1+i D.1﹣i
3.已知复数z(其中i为虚数单位),则z的虚部为( )
A.﹣1 B.1 C.﹣i D.i
4.已知复数z满足z•i2020=1+i2019(其中i为虚数单位),则复数z的虚部是( )
A.﹣1 B.1 C.﹣i D.i
5.设i是虚数单位,则复数z=()2013=( )
A.﹣1 B.1 C.﹣i D.i
6.已知复数z=﹣1+i,则( )
A.﹣1 B.1 C.﹣i D.i
7.若Z=1+i,则|Z2﹣Z|=( )
A.0 B.1 C. D.2
8.当z时,z100+z50+1的值等于 .
题型四.待定系数在复数中的应用——最值问题
1.若复数z满足3z4+2i,则z=( )
A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i
2.设复数z满足z2=3+4i(i是虚数单位),则z的模为( )
A.25 B.5 C. D.2+i
3.设复数z满足|z1|=1,|z2|=2,z1+z2=﹣1i,则|z1﹣z2|= .
4.已知z∈C,且|z|=1,则|z﹣2﹣2i|(i为虚数单位)的最小值是( )
A.21 B.21 C. D.2
5.设复数z1,z2满足|z1﹣1|=1,|z2+3i|=2,则|z1﹣z2|的最大值为( )
A.3+2 B.2 C.3 D.6
6.已知复数z=x+yi(x,y∈R)满足条件|z﹣4i|=|z+2|,则2x+4y的最小值是 .
高端精品高中数学一轮专题-复数的几何意义(讲)教案: 这是一份高端精品高中数学一轮专题-复数的几何意义(讲)教案,共4页。教案主要包含了自主学习,合作探究等内容,欢迎下载使用。
高端精品高中数学一轮专题-复数的乘、除运算(讲)教案: 这是一份高端精品高中数学一轮专题-复数的乘、除运算(讲)教案,共2页。教案主要包含了自主学习,合作探究等内容,欢迎下载使用。
高端精品高中数学一轮专题-数系的扩充和复数的概念(讲)教案: 这是一份高端精品高中数学一轮专题-数系的扩充和复数的概念(讲)教案,共3页。教案主要包含了自主学习,合作探究等内容,欢迎下载使用。