初中数学华师大版九年级上册第23章 图形的相似23.5 位似图形测试题
展开专题23.6 图形的位似变换-重难点题型
【华东师大版】
【知识点1 位似图形】
1、定义:一般的,如果两个相似多边形任意一组对应顶点,所在的直线都经过同一点,且有=,那么这样的两个多边形叫做位似多边形,点叫做位似中心
2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比
3、画图步骤:
(1)尺规作图法:① 确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形
(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数,
所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为
【题型1 图形的位似变换(放大与缩小问题)】
【例1】(2021•北碚区校级模拟)在平面直角坐标系中,已知点A(1,0),B(2,1),C(﹣1,2),以原点O为位似中心,位似比为2,把四边形OABC放大,则点C对应点C′的坐标为( )
A.(,1) B.(﹣2,4)
C.(,1)或(,﹣1) D.(﹣2,4)或(2,﹣4)
【变式1-1】已知△ABC在直角坐标系中的位置如图所示,以O为位似中心,把△ABC放大2倍得到△A′B′C′,那么A′的坐标为 .
【变式1-2】(2020•成华区模拟)如图,在平面直角坐标系中,已知点A(4,2),过点A作AB⊥x轴,垂足为点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则OC的长度是( )
A.1 B.2 C. D.
【变式1-3】(2020秋•龙沙区期末)如图,在平面直角坐标系中,点A(0,8),点B(8,0),点C在线段AB上,AC=2,若以原点O为位似中心,把线段AB缩小为原来的,得到线段A′B′,则点C的对应点C′坐标为 .
【题型2 图形的位似变换(求点的坐标问题)】
【例2】(2021•阳东区模拟)如图,在△AOB中,A,B两点在x轴的上方,以点O为位似中心,在x轴的下方按1:2的相似比作△AOB的位似图形△A'OB'.设点B的对应点B'的坐标是(4,﹣2),则点B的坐标是( )
A.(2,1) B.(2,﹣1) C.(﹣2,1) D.(﹣2,﹣1)
【变式2-1】(2021春•滦州市期末)如图,△ABO缩小后变为△A'B'O,其中A、B的对应点分别为A'、B',点A、B、A'、B'均在格点上,若线段AB上有点P(m,n),则点P在A'B'上的对应点P'的坐标为( )
A.(,n) B.(m,n) C.(m,) D.()
【变式2-2】(2021•渝中区校级三模)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且面积比为1:9,点A、B、E点在x轴上,若点D的坐标为(1,2),则点G的坐标为( )
A.(3,6) B.(4,8) C.(6,12) D.(6,10)
【变式2-3】(2021春•苏州期末)如图,在平面直角坐标系中,△ABC的顶点A在第二象限,点B坐标为(﹣2,0),点C坐标为(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C.若点A的对应点A′的坐标为(2,﹣3),点B的对应点B′的坐标为(1,0),则点A坐标为( )
A.(﹣3,﹣2) B.(﹣2,) C.(,) D.(,2)
【题型3 图形的位似变换(求位似中心问题)】
【例3】(2021•河北模拟)如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1,1),点C的坐标是(4,2);则它们的位似中心的坐标是( )
A.(0,0) B.(﹣1,0) C.(﹣2,0) D.(﹣3,0)
【变式3-1】如图,在平面直角坐标系中,正方形OABC和正方形ADEF的边OA、AD分别在x轴上,OA=2,AD=3,则正方形OABC和正方形ADEF位似中心的坐标是 .
【变式3-2】一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为 .
【变式3-3】(2020秋•滨海县期末)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′的顶点的横、纵坐标都是整数.若B(5,2),△ABC与△A′B′C′是位似图形,则位似中心的坐标是 .
【题型4 图形的位似变换(求面积问题)】
【例4】(2021•北碚区校级模拟)如图,在△ABC中,点A的坐标为(3,6),以原点O为位似中心,将△ABC位似缩小后得到△A′B′C′.若点A′的坐标为(1,2),△A′B′C′的面积为1,则△ABC的面积为( )
A.2 B.3 C.4 D.9
【变式4-1】(2020秋•福鼎市校级月考)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,,则四边形EFGH与四边形ABCD的面积比为( )
A. B. C. D.
【变式4-2】(2020秋•广陵区校级期末)如图,△DEF和△ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC的中点,若△ABC的面积是8,△DEF的面积是( )
A.2 B.4 C.6 D.8
【变式4-3】如图,点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,若四边形ABCD的面积为5,则四边形A1B1C1D1的面积为 .
【题型5 位似变换作图(求点坐标问题)】
【例5】(2021•肇源县开学)如图,O为原点,B,C两点坐标分别为(3,﹣1)(2,1).
(1)以O为位似中心在y轴左侧将△OBC放大两倍,并画出图形;
(2)分别写出B,C两点的对应点B′,C′的坐标;
(3)已知M(x,y)为△OBC内部一点,写出M的对应点M′的坐标.
【变式5-1】(2020秋•新田县期末)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(3,3),B(1,2),C(4,1),点E坐标为(1,1).
(1)画出将△ABC向左平移5个单位长度的△A1B1C1;
(2)画出和△ABC以点E为位似中心的位似图△A2B2C2,△A2B2C2和△ABC位似比为2:1,且位于点E的两侧.
(3)直接写出A2、B2、C2三个点的坐标.
【变式5-2】(2021春•垦利区期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(4,1),C(1,1).
请解答下列问题:
(1)画出△ABC关于x轴成轴对称的△A1B1C1,并直接写出点B1的坐标;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△A1B1C1放大后的图形△A2B2C2,并直接写出A2点的坐标.
【变式5-3】(2021•顺城区一模)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(﹣2,3),点B的坐标为(﹣1,2),点C的坐标为(﹣1,1),请解答下列问题:
(1)在网格内将△ABC沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移1个单位长度得到△A1B1C1,点A,B,C的对应点分别是A1,B1,C1,请画出△A1B1C1,并直接写出点A1,B1,C1的坐标;
(2)以原点O(0,0)为位似中心,在第一象限内将△A1B1C1按相似比1:2放大得到△A2B2C2,请画出△A2B2C2,并直接写出点A2,B2,C2的坐标.
【题型6 位似变换作图(求面积问题)】
【例6】(2021春•朝阳区校级期末)如图是6×6的网格,每个小正方形的顶点称为格点.△ABC顶点A、B、C均在格点上,在给定网格中按要求作图,并保留作图痕迹.
(1)在图中画出△ABC中BC边上的中线AD;
(2)在图中画出△BMN,使得△BMN与△BCA是位似图形,且点B为位似中心,点M、N分别在AB、BC边上,位似比为;
(3)连结MD、ND,四边形AMND的面积是 .
【变式6-1】(2020秋•连南县期末)已知,△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.
(2)若图中每个小方格的面积为1,请直接写出△A2B2C2的面积.
【变式6-2】(2020秋•三水区期末)如图,在平面直角坐标系中,以原点O为位似中心,将△OAB放大到原来的2倍后得到△OA'B',其中A、B在图中格点上,点A、B的对应点分别为A'、B'.
(1)在第一象限内画出△OA'B';
(2)求△OA'B'的面积.
【变式6-3】 (2021•青神县模拟)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)在第四象限画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;
(3)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.
专题3 旋转重难点模型(5大类型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版): 这是一份专题3 旋转重难点模型(5大类型)-2023-2024学年九年级数学上册期末复习《重难点题型》(人教版),文件包含专题3旋转重难点模型5大类型原卷版docx、专题3旋转重难点模型5大类型解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
人教版九年级上册第二十三章 旋转综合与测试随堂练习题: 这是一份人教版九年级上册第二十三章 旋转综合与测试随堂练习题,文件包含专题05旋转重难点题型分类解析版人教版doc、专题05旋转重难点题型分类原卷版-人教版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
数学九年级上册第21章 二次根式21.1 二次根式精练: 这是一份数学九年级上册第21章 二次根式21.1 二次根式精练,文件包含专题211二次根式-重难点题型举一反三华东师大版解析版docx、专题211二次根式-重难点题型举一反三华东师大版原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。