高端精品高中数学一轮专题-单调性与最大(小)值课件PPT
展开
这是一份高端精品高中数学一轮专题-单调性与最大(小)值课件PPT,共47页。PPT课件主要包含了跟踪训练三1,跟踪训练四,跟踪训练五,达标检测等内容,欢迎下载使用。
2.单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.
[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y= 在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y= 在(-∞,0)∪(0,+∞)上单调递减.
题型分析 举一反三
题型一 利用图象确定函数的单调区间
求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:
分析:若函数为我们熟悉的函数,则直接给出单调区间,否则应先画出函数的草图,再结合图象“升降”给出单调区间.
解:(1)函数y=3x-2的单调区间为R,其在R上是增函数.(2)函数y=- 的单调区间为(-∞,0),(0,+∞),其在(-∞,0)及(0,+∞)上均为增函数.
由图象可知,函数的单调增区间为(-∞,1],[2,+∞);单调减区间为[1,2].
题型二 利用函数的图象求函数的最值
例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.
由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域为(-∞,2].
(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.
解:(1)函数f(x)的图象如图所示.(2)由图象可知f(x)的最小值为f(1)=1,无最大值.
题型三 证明函数的单调性
例3 求证:函数f(x)=x+ 在区间(0,1)内为减函数.
证明:设x1,x2是区间(0,1)内的任意两个实数,且x1
相关课件
这是一份高中人教A版 (2019)第三章 函数概念与性质3.2 函数的基本性质课文配套ppt课件,共16页。
这是一份高中数学人教A版 (2019)必修 第一册3.2 函数的基本性质课文课件ppt,共17页。PPT课件主要包含了单调性,fx1,fx2,fxx2,-∞0,单调性与单调区间,0+∞,几点注意事项,单调性的证明,求单调区间等内容,欢迎下载使用。
这是一份人教A版 (2019)3.2 函数的基本性质完美版课件ppt,共34页。PPT课件主要包含了常考题型,函数最值的求解,函数最值的应用,2恒成立问题等内容,欢迎下载使用。