终身会员
搜索
    上传资料 赚现金

    2012年高中重点中学数学教案 第12课时《平移》 湘教版必修2

    立即下载
    加入资料篮
    2012年高中重点中学数学教案 第12课时《平移》 湘教版必修2第1页
    2012年高中重点中学数学教案 第12课时《平移》 湘教版必修2第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湘教版必修25.3简单的三角恒等变换教学设计

    展开

    这是一份湘教版必修25.3简单的三角恒等变换教学设计,共4页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。


    平移

    教学目的:

    1.理解向量平移的几何意义;

    2.掌握平移公式,并能熟练运用平移公式简化函数解析式.

    教学重点:平移公式.

    教学难点:向量平移几何意义的理解.

    授课类型:新授课

    课时安排:1课时

        :多媒体、实物投影仪

    内容分析
        启发学生根据函数图象的平移来理解图形的平移,引导学生弄清图形在平移前后新旧坐标间的关系,深刻理解一个平移就是一个向量,从而掌握向量平移在简化函数解析式的应用.

    教学过程

    一、复习引入:

    1.两个非零向量夹角的概念

    已知非零向量,作,则AOBθ(0θπ)叫的夹角.

    2.平面向量数量积(内积)的定义已知两个非零向量,它们的夹角是θ,则数量|a||b|cos的数量积,记作ab,即有ab = |a||b|cos

    (0θπ).并规定0与任何向量的数量积为0

    3.向量的数量积的几何意义:

    数量积ab等于a的长度与ba方向上投影|b|cos的乘积

    4.两个向量的数量积的性质:

    ab为两个非零向量,e是与b同向的单位向量

    1ea = ae =|a|cos2ab ab = 0

    3ab同向时,ab = |a||b|;当ab反向时,ab = |a||b|

     特别的aa = |a|2

    4cos =5|ab| |a||b|

    5. 平面向量数量积的运算律

    交换律:a b = b a

    数乘结合律:(a)b =(ab) = a(b)

    分配律:(a + b)c = ac + bc

    6.两个向量的数量积等于它们对应坐标的乘积的和

    7.平面内两点间的距离公式

    (1)设,则

    (2)如果表示向量的有向线段的起点和终点的坐标分别为,那么(平面内两点间的距离公式)

    8.向量垂直的判定

    ,则 

    9.两向量夹角的余弦(   

    cos=

    二、讲解新课:

    1.平移的概念

    F为平面内一个图形,将F上所有的点按照同一方向,移动同样的长度,得到,这个过程叫做图形的平移.

    在图形平移过程中,自一点都是按照同一方向移动同样的长度,所以我们有两点思考:

    其一,平移所遵循的长度方向正是向量的两个本质特征,因此,从向量的角度看,一个平移就是一个向量.

    其二,由于图形可以看成点的集合,故认识图形的平移,就其本质来讲,就是要分析图形上点的平移.

    2.平移公式

    设点P(x,y)按照给定的向量a=(h,k)平移后得到新点

    容易看到,公式中是用旧点的坐标和平移向量的坐标来表示新点坐标的,从向量的角度可以理解为向量坐标等于终点(新点)坐标减去起点(旧点)坐标,故公式也可变形为

    3.图形的平移公式

    给定向量a=(h,k),由旧解析式求新解析式时,把公式,代入旧解析式中整理可得;若由新解析式求旧解析式,则把公式代入到新解析式中整理可得.

    应当注意,上述点或图形平移,坐标轴并没有移动,平移前后均在同一坐标系上.

    三、讲解范例:

    例1   (1)把点A(2, 1)a = (3, 2)平移,求对应点A的坐标

    (2)点M(8, 10)a平移后对应点的坐标为(7, 4),求a

          解:(1)由平移公式:  即对应点A的坐标为(1, 3)

             (2)由平移公式:a的坐标为(15, 14)

    例2 将函数y = 2x的图象la = (0, 3)平移到,求的函数解析式

    解:设P(x, y)l上任一点,它在上的对应点为

    由平移公式:

     代入y = 2x得: 3 = 2    即: = 2 + 3

    按习惯,将 写成xy的解析式:y = 2x + 3

    (实际上是图象向上平移了3个单位)

    例3 已知抛物线y = x2 + 4x + 7(1)求抛物线顶点坐标 (2)求将这条抛物线平移到顶点与原点重合时的函数解析式

    解:(1)设抛物线y = x2 + 4x + 7的顶点坐标为(h, k)

      h = 2,  k = 3     顶点坐标为(2, 3)

    (2)按题设,这种平移是使点(2, 3)移到O(0, 0)

    = (m, n) 

    P(x, y)是抛物线y = x2 + 4x + 7上任一点,对应点

     

    代入y = x2 + 4x + 7=     y = x2

    四、课堂练习

    1.将点P(7,0)按向量a平移,对应点A(11,5),则a等于(   

    A.(2,5)         B.(4,3)       C.(4,5)       D.(5,4)

    2.将函数y=f(x)的图象F按向量a=(-3,2)平移后得y=6sin5的图象,则f(x)等于(   

    A.y=6sin(5x+15)+2                B.y=6sin(5x-15)+2

    C.y=6sin(5x+15)-2                D.y=6sin(5x-15)-2

    3.将函数y=4-n-(x-m)的图象按向量a平移得到的图象的函数为y=4-x,则a等于(    

    A.(m,n)          B.(m,-n)      C.(-m,n)      D.(-m,-n)

    4.按向量a把点A(1,1)平移后得到A(3,-4),按此平移法,则点B(-2,-1)应平移到       .

    5.将一抛物线Fa=(-1,3)平移后,得到抛物线F的函数解析式为

    y=2(x+1)+3,则F的解析式为        .

    6.若在直线l上有两点A(xy)和B(xy),如果按向量a平移后,A点对应点的坐标为(2x,2y),则B点对应点的坐标为       .

    7.是否存在一个平移,它把点(0,-1)移至(1,0),且把点(-1,3)移至(0,4).

    8.将抛物线y=x-4x+5按向量a平移,使顶点与原点重合,求向量a的坐标.

    9.将一次函数y=mx+n的图象C按向量a=(2,3)平移后,得到的图象仍然为C,试求m的值.

    参考答案:1.C  2.D  3.C  4.(0,-6)  5.y=2x2  6.(x1+x2,y1+y2)

    7.存在  8.(-2,-1)  9.

    五、小结  通过本节学习,要求大家理解平移的意义,深刻认识一个平移就是一个向量,掌握平移公式,并能熟练运用平移公式简化函数解析式.

    六、课后作业

    七、板书设计(略)

    八、课后记:

     

    相关教案

    2020-2021学年4.6向量的应用教学设计:

    这是一份2020-2021学年4.6向量的应用教学设计,共6页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。

    湘教版必修23.4函数y=(“x“)的图像与性质教案:

    这是一份湘教版必修23.4函数y=(“x“)的图像与性质教案,共6页。教案主要包含了讲解范例,课堂练习,课后作业,板书设计,课后记及备用资料等内容,欢迎下载使用。

    高中数学湘教版必修24.1什么是向量第1课时教学设计及反思:

    这是一份高中数学湘教版必修24.1什么是向量第1课时教学设计及反思,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,试题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map