湘教版必修25.3简单的三角恒等变换教案
展开
这是一份湘教版必修25.3简单的三角恒等变换教案,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 余弦定理及其应用,课后作业,板书设计,课后记等内容,欢迎下载使用。
正弦定理、余弦定理(2)教学目的:1.掌握正弦定理、余弦定理;2.使学生能初步运用它们解斜三角形,并会解决斜三角形的计算问题教学重点:正弦定理、余弦定理的运用教学难点:正弦定理、余弦定理的灵活运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即 == =2R(R为△ABC外接圆半径)2正弦定理的应用 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b和A, 用正弦定理求B时的各种情况:⑴若A为锐角时:⑵若A为直角或钝角时:3.在Rt△ABC中(若C=90)有: 在斜三角形中一边的平方与其余两边平方和及其夹角还有什么关系呢?二、讲解新课:1.余弦定理 :三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍即 [问题] 对于任意一个三角形来说,是否可以根据一个角和夹此角的两边,求出此角的对边?[推导] 如图在中,、、的长分别为、、∵∴即同理可证 ,2.余弦定理可以解决的问题利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角 三、讲解范例:例1在ΔABC中,已知a=7,b=10,c=6,求A、B和C解:∵ =0725, ∴ A≈44°∵ =08071, ∴ C≈36°,∴ B=180°-(A+C)≈100°(∵sinC= ≈05954,∴ C ≈ 36°或144°(舍))例2在ΔABC中,已知a=2730,b=3696,C=82°28′,解这个三角形解:由 ,得 c≈4297∵ ≈07767, ∴ A≈39°2′,∴ B=180°-(A+C)=58°30′(∵sinA= ≈06299,∴ A=39°或141°(舍))例 3 ΔABC三个顶点坐标为(6,5)、(-2,8)、(4,1),求A解法一:∵ |AB| =|BC| =|AC| ==∴ A≈84°解法二:∵ =(–8,3),=(–2,–4)∴ cosA==,∴ A≈84° 例4 设=(x1, y1) =(x2, y2) 与的夹角为 (0≤≤),求证:x1x2+ y1y2=||||cos证明:如图,设, 起点在原点,终点为A,B则A=(x1, y1) B=(x2, y2) = 在△ABC中,由余弦定理||2=||2+||22|||| cos∵||2=||2=|(x2-x1, y2-y1)|2=(x2-x1)2+( y2-y1)2||2=x12+y12 ,||2= x22+y22∴(x2-x1)2+( y2-y1)2= x12+y12+ x22+y222|||| cos∴x1x2+ y1y2=||||cos 即有•= x1x2+ y1y2=||||cos四、课堂练习:1在△ABC中,bCosA=acosB,则三角形为( )A直角三角形 B锐角三角形C等腰三角形D等边三角形2在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为 ;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为
3在△ABC中,sinA=2cosBsinC,则三角形为 4在△ABC中,BC=3,AB=2,且,A= 参考答案: 1C 2钝角三角形,直角三角形,锐角三角形3等腰三角形 4120°五、小结 余弦定理及其应用六、课后作业:1在△ABC中,证明下列各式:(1)(a2-b2-c2)tanA+(a2-b2+c2)tanB=0(2) 证明:(1)左边=(a2-b2-c2)故原命题得证 故原命题得证2在△ABC中,已知sinB·sinC=cos2,试判断此三角形的类型解:∵sinB·sinC=cos2, ∴sinB·sinC=∴2sinB·sinC=1+cos[180°-(B+C)]将cos(B+C)=cosBcosC-sinBsinC代入上式得cosBcosC+sinBsinC=1, ∴cos(B-C)=1又0<B,C<π,∴-π<B-C<π∴B-C=0 ∴B=C故此三角形是等腰三角形3在△ABC中,bcosA=acosB试判断三角形的形状解法一:利用余弦定理将角化为边∵bcosA=acosB,∴b·∴b2+c2-a2=a2+c2-b2,∴a2=b2,∴a=b,故此三角形是等腰三角形解法二:利用正弦定理将边转化为角∵bcosA=acosB又b=2RsinB,a=2RsinA,∴2RsinBcosA=2RsinAcosB∴sinAcosB-cosAsinB=0∴sin(A-B)=0∵0<A,B<π,∴-π<A-B<π,∴A-B=0 即A=B故此三角形是等腰三角形七、板书设计(略)八、课后记:
相关教案
这是一份湘教版必修23.4函数y=(“x“)的图像与性质教案,共6页。教案主要包含了讲解范例,课堂练习,课后作业,板书设计,课后记及备用资料等内容,欢迎下载使用。
这是一份高中数学湘教版必修24.1什么是向量第1课时教学设计及反思,共5页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,试题等内容,欢迎下载使用。
这是一份湘教版必修25.3简单的三角恒等变换教学设计,共4页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,课后作业,板书设计,课后记等内容,欢迎下载使用。