![高中数学:1.5.2《二项式系数的性质》(二) 教案 (北师大选修2-3)01](http://www.enxinlong.com/img-preview/3/3/12481693/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学:1.5.2《二项式系数的性质》(二) 教案 (北师大选修2-3)
展开1.5.2二项式系数的性质
教学目标:
理解和掌握二项式系数的性质,并会简单的应用
教学重点:
理解和掌握二项式系数的性质,并会简单的应用
教学过程
一、复习引入:
1.二项式定理
,
2.二项展开式的通项公式:
二、讲解新课:
1二项式系数表(杨辉三角)
展开式的二项式系数,当依次取…时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和
2.二项式系数的性质:
(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵).
(2)增减性与最大值.∵,
∴相对于的增减情况由决定,,
当时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;
当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值.
(3)各二项式系数和:
∵,
令,则
三、例子
例1.在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和
证明:在展开式中,令,则,
即,
∴,
即在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
说明:由性质(3)及例1知.
例2.已知,求:
(1); (2); (3).
解:(1)当时,,展开式右边为
∴,
当时,,∴,
(2)令, ①
令, ②
①② 得:,∴ .
(3)由展开式知:均为负,均为正,
∴由(2)中①+② 得:,
∴ ,
∴
例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数
解:
=,
∴原式中实为这分子中的,则所求系数为
例4.在(x2+3x+2)5的展开式中,求x的系数
解:∵
∴在(x+1)5展开式中,常数项为1,含x的项为,
在(2+x)5展开式中,常数项为25=32,含x的项为
∴展开式中含x的项为 ,
∴此展开式中x的系数为240
例5.已知的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项
解:依题意
∴3n(n-1)(n-2)(n-3)/4!=4n(n-1)/2!n=10
设第r+1项为常数项,又
令,
此所求常数项为180
课堂小节:本节课学习了二项式系数的性质
课堂练习:
课后作业:
高中数学苏教版 (2019)选择性必修第二册7.4二项式定理教案: 这是一份高中数学苏教版 (2019)选择性必修第二册7.4二项式定理教案,共7页。教案主要包含了新课导入,新知探究,应用举例,课堂练习,课堂小结,布置作业等内容,欢迎下载使用。