![高中数学:2.5《离散型随机变量的均值》(一) 教案 (北师大选修2-3)第1页](http://www.enxinlong.com/img-preview/3/3/12481737/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学:2.5《离散型随机变量的均值》(一) 教案 (北师大选修2-3)
展开“教材分析与导入设计”第二章 概率2.5 离散型随机变量的均值与方差本节教材分析 学习均值与方差就分别是用来刻画平均水平与偏离程度的,均值与方差是离散型随机变量的两个最重要的数字特征.在这一节中,课本首先通过第二节中的“取次品问题”,类比小学中求西瓜的平均质量的方法,引入离散型随机变量均值的概念.接着,通过举例,说明了均值的重要意义以及它在解决实际问题中的重要应用.最后,通过比较A,B两种表的“日走时误差”的例子,引入离散型随机变量方差的概念,说明了方差的意义,并举例进行了简单的方差计算.三维目标知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望教学建议:分两课时完成本节内容,可以一节课均值,一节课方差;也可以一节理论,一节应用.可以通过提出问题,分析理解问题,再抽象概括,进而举例应用,尽量让学生归纳总结,再进行实践应用. 新课导入设计 导入一:(复习引入):1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型) 5. 分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的概率分布,简称ξ的分布列 6. 分布列的两个性质: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k=0,1,2,…,n,).于是得到随机变量ξ的概率分布如下:ξ01 k…nP …称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k次独立重复试验时事件第一次发生.如果把k次试验时事件A发生记为、事件A不发生记为,P()=p,P()=q(q=1-p),那么(k=0,1,2,…, ).于是得到随机变量ξ的概率分布如下:ξ123…k…P……称这样的随机变量ξ服从几何分布记作g(k,p)= ,其中k=0,1,2,…, .导入二:情境导入前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产件产品所出的不合格品数分别用表示,的概率分布如下.2.问题: 如何比较甲、乙两个工人的技术?
相关教案
这是一份北师大版 (2019)选择性必修 第一册3.1 离散型随机变量的均值教案设计,共8页。教案主要包含了新课导入,应用举例,课堂练习,归纳小结,布置作业等内容,欢迎下载使用。
这是一份人教版新课标A选修2-32.3离散型随机变量的均值与方差教案,共10页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,教学反思等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)