终身会员
搜索
    上传资料 赚现金
    2022中考数学专题三 几何证明(共40张PPT)课件PPT
    立即下载
    加入资料篮
    2022中考数学专题三 几何证明(共40张PPT)课件PPT01
    2022中考数学专题三 几何证明(共40张PPT)课件PPT02
    2022中考数学专题三 几何证明(共40张PPT)课件PPT03
    2022中考数学专题三 几何证明(共40张PPT)课件PPT04
    2022中考数学专题三 几何证明(共40张PPT)课件PPT05
    2022中考数学专题三 几何证明(共40张PPT)课件PPT06
    2022中考数学专题三 几何证明(共40张PPT)课件PPT07
    2022中考数学专题三 几何证明(共40张PPT)课件PPT08
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022中考数学专题三 几何证明(共40张PPT)课件PPT

    展开
    这是一份2022中考数学专题三 几何证明(共40张PPT)课件PPT,共40页。

      几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用.几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系.这两类问题常常可以相互转化,如证明平行关系可转化为证明角相等或角互补的问题.
    考点一 证明线段相等或角相等   两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系.很多其他问题最后都可化归为此类问题来证.证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其他如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到.
    【示范题1】(2017·湖州中考)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG.
    (2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连接DH交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.
    【思路点拨】(1)欲证明OE=OG,只要证明△DOG≌△COE即可.(2)①欲证明∠ODG=∠OCE,只要证明△ODG≌△OCE即可;②设CH=x,由△CHE∽△DCH,可得 ,即HC2=EH·CD,由此构建方程即可解决问题.
    【自主解答】(1)∵四边形ABCD是正方形,∴AC⊥BD,OD=OC,∴∠DOG=∠COE=90°,∴∠OEC+∠OCE=90°,∵DF⊥CE,∴∠OEC+∠ODG=90°,∴∠ODG=∠OCE,∴△DOG≌△COE(ASA),∴OE=OG.
    (2)①∵OG=OE,∠DOG=∠COE=90°,OD=OC,∴△ODG≌△OCE,∴∠ODG=∠OCE.②设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1-x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1-x,
    ∵∠ODG=∠OCE,∴∠BDC-∠ODG=∠ACB-∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴△CHE∽△DCH,∴ ,∴HC2=EH·CD,∴x2=(1-x)·1,解得x= 或 (舍弃),∴HC= .
    【特别提醒】本题考查了正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质.在几何图形中,证明线段(或角)相等的一般思路是证明线段(或角)所在的三角形全等;求线段的长时,可构造直角三角形利用勾股定理求解,有时利用相似三角形的对应边成比例构造方程求解.
    【变式训练】如图,在Rt△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE.(2)求证:DE=EC.
    【证明】(1)连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°-∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.
    (2)由(1)知∠CBE=∠ABE=30°,∵DE⊥AB,∠C=90°,∴DE=CE.
    【知识归纳】1.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果):从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决.
    (2)分析法(执果索因):从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止.
    (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的.
    2.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形.在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的.
    考点二 证明直线平行或垂直   在两条直线的位置关系中,平行与垂直是两种特殊的位置.证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明.证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证.
    【示范题2】(2017·南充中考)如图,在正方形ABCD中,点E,G分别是边AD,BC的中点,AF= AB.(1)求证:EF⊥AG.
    (2)若点F,G分别在射线AB,BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB=S△OAB时,求△PAB周长的最小值.
    【思路点拨】(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出 ,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可.
    (2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论.
    (3)过点O作MN∥AB,交AD于点M,交BC于点N,则MN⊥AD,MN=AB=4,由三角形的面积关系得出点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM= MN=2,连接EG,则EG∥AB,EG=AB=4,证明△AOF∽△GOE,得出 ,证出 ,得出AM= AE= ,由勾股定理求出PA,即可得出答案.
    【自主解答】(1)∵四边形ABCD是正方形,∴AD=AB,∠EAF=∠ABG=90°,∵点E,G分别是边AD,BC的中点,AF= AB.∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG.
    (2)成立.理由如下:根据题意得:又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG.
    (3)过点O作MN∥AB,交AD于点M,交BC于点N,如图所示,则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,S△PAB=S△OAB,∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM= MN=2,
    连接EG,PA,PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴∵MN∥AB,∴∴由勾股定理得:PA=∴△PAB周长的最小值=2PA+AB=
    【特别提醒】本题是四边形的综合题目,考查了正方形的性质、相似三角形的判定与性质、勾股定理、三角形内角和定理、直角三角形的性质等知识,证明三角形相似是解决问题的关键.
    【变式训练】如图所示,在四边形ABCD中,∠A=∠C=90°,BE,DF分别平分∠ABC,∠ADC.判断BE,DF是否平行,并说明理由.
    【解析】BE∥DF.理由如下:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°.∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2= ∠ABC,∠3=∠4= ∠ADC.∴∠2+∠4= (∠ABC+∠ADC)= ×180°=90°.又∠1+∠CEB=90°,∴∠4=∠CEB.∴BE∥DF.
    考点三 证明线段和差的问题 【示范题3】如图,正方形ABCD中,E,F分别在BC,DC上,且∠EAF=45°.试说明:BE+DF=EF.
    【思路点拨】把△ABE逆时针旋转90°得到△ADG,根据旋转的性质可得BE=GD,AE=AG,再根据∠EAF=45°求出∠FAG=45°,然后证明△AEF与△AGF全等,根据全等三角形对应边相等可得EF=GF,即EF=GD+FD,即可证明EF=BE+DF.
    【自主解答】如图,把△ABE逆时针旋转90°得到△ADG,∴BE=GD,AE=AG,∵∠EAF=45°,∴∠FAG=90°-45°=45°,∴∠EAF=∠FAG,在△AEF和△AGF中,
    ∴△AEF≌△AGF(SAS),∴EF=GF,即EF=GD+DF,∴BE+DF=EF.
    【特别提醒】本题考查了正方形四边均相等,且各内角均为直角的性质,考查了全等三角形的证明,本题把△ABE逆时针旋转90°,构建全等三角形△AEF与△AGF是解题的关键.
    【变式训练】如图,已知正方形ABCD中,对角线AC,BD交于O点,过O点作OE⊥OF分别交DC于E,交BC于F,∠FEC的角平分线EP交直线AC于P.(1)求证:OE=OF.(2)写出线段EF,PC,BC之间的一个等量关系式,并证明你的结论.
    【解析】(1)∵正方形ABCD中,对角线AC,BD交于O点,∴AC⊥BD,∴∠BOC=∠DOC=90°,∴∠BOF+∠FOP=90°,∵OE⊥OF,∴∠FOE=90°,∴∠EOC+∠FOP=90°
    ∴∠BOF=∠EOC,又∵OB=OC,∠OBF=∠OCE=45°,∴△BOF≌△COE,∴OE=OF.
    (2)EF+ CP=BC.证明:∵△BOF≌△COE,∴OE=OF,∴∠OEF=∠OFE=45°.∵∠FEC的角平分线EP交直线AC于P,∴∠FEP=∠CEP.∵∠OEP=∠OEF+∠FEP,∠OPE=∠ACD+∠CEP,又∵∠OEF=∠ACD=45°,∴∠OEP=∠OPE.
    相关课件

    2020-2021学年5.3 什么是几何证明完美版教学ppt课件: 这是一份2020-2021学年5.3 什么是几何证明完美版教学ppt课件,共16页。PPT课件主要包含了想一想,基本事实有什么作用呢,平角的定义,等量代换,等式的基本性质,注意事项,余角的定义,垂直的定义等内容,欢迎下载使用。

    初中数学青岛版八年级上册第5章 几何证明初步5.3 什么是几何证明教课课件ppt: 这是一份初中数学青岛版八年级上册第5章 几何证明初步5.3 什么是几何证明教课课件ppt,共17页。PPT课件主要包含了情境导入,自主学习,预习诊断,想一想,读一读,其它基本事实,合作探究,精讲点拨,练一练,本节课你学到什么等内容,欢迎下载使用。

    2018年中考数学总复习课件:专题三、四 规律专题、作图专题 (共12张PPT): 这是一份2018年中考数学总复习课件:专题三、四 规律专题、作图专题 (共12张PPT),共12页。PPT课件主要包含了n+3,-20,专题四作图专题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map