高端精品高中数学一轮专题-空间几何体的表面积和体积(练)(带答案)试卷
展开
这是一份高端精品高中数学一轮专题-空间几何体的表面积和体积(练)(带答案)试卷,共14页。
空间几何体的表面积和体积1.已知圆柱及其展开图如图所示,则其体积为( )A. B. C. D.【答案】D【解析】设底面半径为,高为,根据展开图得,则,所以圆柱的体积为,故选:D.2.已知圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的面是面积为8的正方形,则该圆柱的表面积为( )A. B. C. D.【答案】B【解析】设圆柱的轴截面的边长为,因为过直线的平面截该圆柱所得的面是面积为8的正方形,所以,解得,即圆柱的底面半径为,母线长,所以圆柱的表面积为.故选:B.3.已知一平面截一球得到直径为的圆面,球心到这个面的距离是,则该球的体积为( )A. B. C. D.【答案】B【解析】由题意截面圆半径为,所以球半径为,体积为.故选:B.4.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A. B. C. D.【答案】B【解析】根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.5.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是____cm.【答案】【解析】正六棱柱体积为圆柱体积为所求几何体体积为故答案为: 1.我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,,,,,等腰梯形和等腰梯形的高分别为和,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A. B. C. D.【答案】A【解析】按照图中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形,两条直角边长分别为、,直三棱柱的高为,所以,直三棱柱的体积为.两侧为两个全等的四棱锥,四棱锥的底面为直角梯形,直角梯形的面积为,四棱锥的高为,所以,两个四棱锥的体积之和为,因此,该“羡除”的体积为.故选:A.2.蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠(近似看作球体)的表面上有四个点、、、,满足为正三棱锥,是的中点,且,侧棱,则该蹴鞠的表面积为( )A. B. C. D.【答案】A【解析】若,为中点易得,再应用余弦定理、勾股定理求得,即为直三棱锥,即可求外接球半径,进而求表面积.【详解】如下图,若为中点,则,又,∴,又为正三棱锥且侧棱,∴,若,则,,在中,,即,可得,,∴,即为直三棱锥,易得外接球半径,∴该蹴鞠的表面积为.故选:A3.【多选题】已知圆台上、下底面的圆心分别为,,半径为,,圆台的母线与下地面所成角的正切值为,为上一点,则( )A.圆台的母线长为B.当圆锥的圆锥的体积相等时,C.圆台的体积为D.当圆台上、下底面的圆周都在同一球面上,该球的表面积为【答案】BCD【解析】圆台上、下底面的圆心分别为,,半径为2,4,圆台的母线与下底面所成角的正切值为3,为上一点,,母线,与圆台的母线长为6矛盾,所以A错误;,,B正确;,C正确;设球心到上底面的距离为,则,解得,,,D正确;故选:BCD.4.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中,且点M为BC边上的中点,设内切圆的圆心为,由于,故,设内切圆半径为,则:,解得:,其体积:.故答案为:.5.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”,底面,,,则该“阳马”的最长棱长等于______;外接球表面积等于______.【答案】3 【解析】如图,底面,底面为长方形,且,,所以.最长棱为:3.该几何体可以通过补体得长方体,所以其外接球的半径为.则其外接球的表面积为,故答案为:3;. 6.在三棱锥中,平面,,,,是上的一动点,且直线与平面所成角的最大值为,则________,三棱锥的外接球的表面积为________.【答案】6 【解析】设直线与平面所成的角为,三棱锥外接球的球心为,半径为,如图所示,则,所以,则的最小值为,的最小值是,即点到的距离为,所以.因为,所以,所以,所以,所以.取的外接圆的圆心为,则圆的半径.连接,作于点,则点为的中点,所以,故三棱锥的外接球的表面积.故答案为:6;.7.已知某圆柱的轴截面是一个正方形,且该圆柱表面积(底面和侧面面积之和)为,其外接球的表面积为,则该圆柱的表面积与其外接球的表面积的比值________.【答案】【解析】设圆柱的底面半径为,高为,因为圆柱的轴截面是一个正方形,所以,所以圆柱表面积,其外接球的球心在上下底面圆圆心连线的中点位置,可知球心到上底面圆的距离为,由勾股定理可得:外接球的半径,所以外接球的表面积,所以该圆柱的表面积与其外接球的表面积的比值,故答案为:.8.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为在一正三棱柱中挖去一个圆柱后的剩余部分(圆柱的上下两底面圆与三棱柱的底面各边相切),圆柱底面直径为,高为.打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量为______.(取,,精确到0.1).【答案】【解析】由题意,正三棱柱底面(等边三角形)如上图有且,,,∴,则,故底面面积,∴正三棱柱的体积.而圆柱的体积为,∴制作该模型所需原料的质量为克.故答案为:9.在四面体中,,,,,若四面体的外接球半径为,则四面体的体积的最大值为___________.【答案】【解析】如图所示,不妨将四面体放入下图中的长方体中,则长方体的宽为,设长方体的长为,高为.因为四面体的外接球半径为,所以此长方体外接球半径为,则,解得,所以四面体的体积,当且仅当时等号成立,所以四面体的体积最大值为.故答案为:1.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A. B. C. D.【答案】D【解析】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所以该棱台的体积.故选:D.2.若棱长为的正方体的顶点都在同一球面上,则该球的表面积为( )A. B. C. D.【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即,所以,这个球的表面积为.故选:C.3.已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为( )A. B. C. D.【答案】A【解析】,为等腰直角三角形,,则外接圆的半径为,又球的半径为1,设到平面的距离为,则,所以.故选:A.4.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. B. C. D.【答案】C【解析】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C.5.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( )A. B. C. D.【答案】B【解析】如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.6.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A. B. C. D.【答案】D【解析】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即 ,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D.
相关试卷
这是一份高端精品高中数学一轮专题-直线与直线方程(练)(带答案)试卷,共17页。试卷主要包含了已知直线l1等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-抛物线(练)(带答案)试卷,共9页。
这是一份高端精品高中数学一轮专题-双曲线(练)(带答案)试卷,共10页。