高端精品高中数学一轮专题-导数综合检测卷6试卷
展开
这是一份高端精品高中数学一轮专题-导数综合检测卷6试卷,共3页。试卷主要包含了若函数,满足,且,则,函数的零点个数为等内容,欢迎下载使用。
导数综合检测卷第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.如图是函数的导函数的图象,则函数的极小值点的个数为( )A.0 B.1 C.2 D.32.若函数,满足,且,则( )A.1 B.2 C.3 D.43.等比数列中,,,函数,则( )A.26 B.29 C.212 D.2154.函数的零点个数为( )A. B. C. D.5.点是曲线上任意一点,曲线在点处的切线与平行,则的横坐标为( )A.1 B. C. D.6.若函数在上单调递减,则实数的取值范围是( )A. B. C. D.7.若函数是上的增函数,则实数的取值范围是( )A. B. C. D.8.已知函数,且,当时,恒成立,则a的取值范围为( )A. B.C. D.9.设函数在区间上存在零点,则的最小值为( )A.7 B. C. D.10.已知为自然对数的底数,为实数,且不等式对任意的恒成立.则当取最大值时,的值为( )A. B. C. D.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.函数,在点处的切线方程为__________.12.某批发商以每吨20元的价格购进一批建筑材料,若以每吨M元零售,销量N(单位:吨)与零售价M(单位:元)有如下关系:,则该批材料零售价定为_______元时利润最大,利润的最大值为_________元.13.已知函数,当时,函数有极值,则函数在上的最大值为_________.14.已知函数,设x=1是的极值点,则a=___,的单调增区间为___.15.已知函数,对任意的,当时,,则实数a的取值范围是________.16.已知函数有两个不同的极值点,,则a的取值范围___________;且不等式恒成立,则实数的取值范围___________.17.已知函数.(1)当时,的极小值为________;(2)若在上恒成立,则实数a的取值范围为___________.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.已知函数f(x)=x+,g(x)=2x+a.(1)求函数f(x)=x+在上的值域;(2)若∀x1∈,∃x2∈[2,3],使得f(x1)≥g(x2),求实数a的取值范围.19.已知函数.(1)求函数的单调区间.(2)若对恒成立,求实数的取值范围.20.已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)求证:当时,.21.已知函数.(1)求函数的单调区间;(2)若对任意,函数的图象不在轴上方,求实数的取值范围.22.已知函数,其中为常数,且.(1)当时,求的单调区间;(2)若在处取得极值,且在的最大值为1,求的值.
相关试卷
这是一份高端精品高中数学一轮专题-导数综合检测卷7试卷,共4页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-导数综合检测卷1试卷,共3页。试卷主要包含了已知函数,则,函数的图象在点处的切线斜率为,函数的单调递减区间是,曲线在点处的切线方程为,已知实数x、y满足,则等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-导数综合检测卷4试卷,共6页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。