|学案下载
终身会员
搜索
    上传资料 赚现金
    数学:7.5《数学归纳法的应用》教案(沪教版高中二年级 第一学期)学案
    立即下载
    加入资料篮
    数学:7.5《数学归纳法的应用》教案(沪教版高中二年级 第一学期)学案01
    数学:7.5《数学归纳法的应用》教案(沪教版高中二年级 第一学期)学案02
    数学:7.5《数学归纳法的应用》教案(沪教版高中二年级 第一学期)学案03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学沪教版高中二年级 第一学期7.4数学归纳法学案设计

    展开
    这是一份高中数学沪教版高中二年级 第一学期7.4数学归纳法学案设计,共7页。学案主要包含了教学内容分析,教学目标设计,教学重点及难点,教学流程设计,教学过程设计等内容,欢迎下载使用。

    本小节的重点是用数学归纳法证明等式、证明数或式的整除.教学时应对书写与表达提出严格的要求.尤其是在证明数或式的整除性时,更要注意说理清楚,并以此作为培养学生逻辑推理能力的一个抓手.
    本小节的难点是用数学归纳法证明数或式的整除性.突破难点的关键是在授课时要重点分析“补项法”的证明思路:通过补项为运用归纳假设创造条件.不要让学生单纯机械地模仿.另外还常用作差方法,通过相减后,证明差能被某数(或某式)整除,再利用归纳假设可得当n=k+1时命题成立.
    二、教学目标设计
    1.会用数学归纳法证明等式;
    2.会用数学归纳法证明数或式的整除;
    3.进一步掌握数学归纳法的证明步骤与数学归纳法的实质.
    三、教学重点及难点:
    用数学归纳法证明等式、证明数或式的整除.
    四、教学流程设计
    运用与深化(例题解析、巩固练习、课后习题)
    数式整除
    实例引入
    等式证明
    复习回顾
    五、教学过程设计
    1.复习回顾:
    用数学归纳法证明命题的两个步骤,是缺一不可的.如果只完成步骤(i)而缺少步骤(ii)不能说明命题对从n0开始的一切正整数n都成立.
    如+1,当n=0、1、2、3、4时都是素数,而n=5时,+1=641×6700417不是素数.
    同样只有步骤(ii)而缺少步骤(i),步骤(ii)的归纳假设就没有根据,递推就没有基础,就可能得出不正确的结论.
    如2+4+6+…+2k=k2+k+a(a为任何数)
    2.讲授新课:
    用数学归纳证明等式
    例1:用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2
    例2:用数学归纳法证明:12+22+32+…+n2=n(n+1)(2n+1).
    [说明]上述两例师生共同讨论完成.完成两例讨论后向学生指出:
    (1)由于证明当n=k+1等式成立时,需证明的结论形式是已知的,只要将原等式中的n换成k+1即得,因此学生在证明过程中,证明步骤必须完整,不能跳步骤;(2)有些等式证明题在证明当n=k+1正确时,需用恒等变形,技巧较高,对基础较差的学生来说完成很困难,这时可通过左、右边的多项式乘法来完成.
    如 求证:… (nN*).
    证明:
    当n=1时,左边=1,右边=×1×(4-1)=1等式成立.
    假设当n=k(kN*)时等式成立,即,
    则n=k+1时,

    即等式成立.
    由(1)(2)知,等式对任何nN*都成立.
    (3) 用数学归纳法证明恒等式成立时,在逆推过程中应注意等式左右的项数的变化.由当n=k到n=k+1时项数的增加量可能多于一项,各项也因n的变化而变化,因此要根据等式的特点仔细分析项数及各项的变化情况.
    例如:求证:
    (*).
    例3 (补充)在1与9之间插入2n-1个正数数,使1,,9成等比数列,在1与9之间又插入2n-1个正数,使1,,9成等差数列.设,,
    求、
    设,是否存在最大自然数m,使对于nN*都有被m整除,试说明理由.
    解:(1)

    (2)
    当n=1时,=64
    当n=2时,=320=5×64
    当n=3时,=36×64
    由此猜想:最大自然数m=64
    用数学归纳法证明上述猜想:
    1.当n=1时,猜想显然成立;
    2.假设当n=k(kN*)时成立,即能被64整除,
    则当n=k+1时,
    由归纳假设知能被64整除,又也能被64整除,所以也能被64整除.
    由1、2知,能被64整除(nN*).
    又因为,所以存在最大自然数64,使能被64整除(nN*).
    [说明]本例是较难的数列与数学归纳法的综合题.在第(1)小题的解题过程中充分利用了等差、等比数列的性质,起到了对等差、等比数列知识的复习作用.本例也可以先将等差、等比数列的公差d、公比q用n表示,然后求出、(可让学生完成),同时本例的第(2)小题既复习了用数学归纳法证明数式的整除性,又为进一步掌握归纳—猜测—论证的问题提供了保证,是否选用本题教师可根据学校学生的实际数学学习水平决定.
    3.巩固练习:
    练习7.6(2)1,2,3
    4.课后习题:
    习题7.5 A组 习题7.5 B组
    5.课堂小结:
    (1)本节中心内容是数学归纳法的应用,数学归纳法适用的范围是:证明某些与连续自然数有关的命题;
    (2)归纳法是一种由特殊到一般的推理方法,分类是完全归纳法和不完全归纳法二种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明; 归纳法是有一系列特殊事例得出一边结论的推理方法,它属于归纳推理.而数学归纳法它是一种演绎推理方法,是一种证明命题的方法!因此,它不属于“不完全归纳法”!甚至连“归纳法”都不是!
    (3)学归纳法作为一种证明方法,它的基本思想是递推(递归)思想,它的证明步骤必须是两步,最后还要总结;数学归纳法证题的步骤:
    ①验证P()成立.
    ②假设P(k)成立(k∈N*且k≥),推证P(k+1)成立.
    数学归纳法的核心,是在验证P()正确的基础上,证明P(n)的正确具有递推性(n≥).第一步是递推的基础或起点,第二步是递推的依据.因此,两步缺一不可,证明中,恰当地运用归纳假设是关键.
    (4)本节课所涉及到的数学思想方法有:递推思想、分类讨论思想、函数与方程思想从这节课的学习中你有何感想?你能否体会到数学归纳法的魅力?
    六.教学设计说明
    1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.
    数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.
    把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.
    2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.
    3.理解数学归纳法中的递推思想,还要注意其中第二步,证明n=k+1命题成立时必须用到n=k时命题成立这个条件.
    即n=k+1时等式也成立.
    这是不正确的.因为递推思想要求的不是n=k,n=k+1时命题到底成立不成立,而是n=k时命题成立作为条件能否保证n=k+1时命题成立这个结论正确,即要求的这种逻辑关系是否成立.证明的主要部分应改为
    以上理解不仅是正确认识数学归纳法的需要,也为第二步证明过程的设计指明了正确的思维方向.
    相关学案

    高中数学沪教版高中二年级 第一学期7.5数学归纳法的应用学案设计: 这是一份高中数学沪教版高中二年级 第一学期7.5数学归纳法的应用学案设计,共3页。

    沪教版高中二年级 第一学期10.1算法的概念学案及答案: 这是一份沪教版高中二年级 第一学期10.1算法的概念学案及答案,共15页。学案主要包含了知识点剖析,典型例题剖析,高考链接等内容,欢迎下载使用。

    高中数学沪教版高中二年级 第一学期7.5数学归纳法的应用学案及答案: 这是一份高中数学沪教版高中二年级 第一学期7.5数学归纳法的应用学案及答案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map