![5.4.2《圆周角和圆心角的关系(2)》 教案01](http://www.enxinlong.com/img-preview/2/3/12490735/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![5.4.2《圆周角和圆心角的关系(2)》 教案02](http://www.enxinlong.com/img-preview/2/3/12490735/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![5.4.2《圆周角和圆心角的关系(2)》 教案03](http://www.enxinlong.com/img-preview/2/3/12490735/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 5.3《垂径定理》 教案 教案 0 次下载
- 5.4.1《圆周角和圆心角的关系(1)》 教案 教案 0 次下载
- 5.5.1《确定圆的条件(1)》 教案 教案 0 次下载
- 5.5.2《确定圆的条件(2)》 教案 教案 0 次下载
- 5.6.1《直线和圆的位置关系(1)》 教案 教案 0 次下载
初中4 圆周角和圆心角的关系教学设计
展开(一)教学知识点
1.掌握圆周角定理几个推论的内容.
2.会熟练运用推论解决问题.
(二)能力训练要求
1.培养学生观察、分析及理解问题的能力.
2.在学生自主探索推论的过程中,经历猜想、推理、验证等环节,获得正确的学习方式.
(三)情感与价值观要求
培养学生的探索精神和解决问题的能力.
教学重点
圆周角定理的几个推论的应用.
教学难点
理解几个推论的“题设”和“结论”.
教学方法
指导探索法.
教具准备
投影片三张
第一张:引例
第二张:例题
第三张:做一做
教学过程
Ⅰ.创设问题情境,引入新课
[师]请同学们回忆一下我们前几节课学习了哪些和圆有关系的角?它们之间有什么关系?
[生]学习了圆心角和圆周角、一条弧所对的圆周角等于它所对的圆心角的一半.即圆周角定理.
[师]我们在分析、证明上述定理证明过程中,用到了些什么数学思想方法?
[生]分类讨论、化归、转化思想方法.
[师]同学们请看下面这个问题:(出示投影片§4.3.2 A)
已知弦AB和CD交于⊙O内一点P,如下图.
求证:PA·PB=PC·PD.
[师生共析]要证PA·PB=PC·PD,可证.由此考虑证明以PA、PC为边的三角形与以PD、PB为边的三角形相似.由于图中没有这两个三角形,所以考虑作辅助线AC和BD.要证△PAC∽△PDB.由已知条件可得∠APC与∠DPB相等,如能再找到一对角相等.如∠A=∠D或∠C=∠B.便可证得所求结论.如何寻找∠A=∠D或∠C=∠B.要想解决这个问题.我们需先进行下面的学习.
Ⅱ.讲授新课
[师]请同学们画一个圆,以A、C为端点的弧所对的圆周角有多少个?(至少画三个)
它们的大小有什么关系?你是如何得到的?
[生] 弧AC所对的圆周角有无数个,它们的大小相等,我是通过度量得到的.
[师]大家想一想,我们能否用验证的方法得到上图中的∠ABC=∠ADC=∠AEC?(同学们互相交流、讨论)
[生]由图可以看出,∠ABC、∠ADC和∠AEC是同弧(弧AC)所对的圆周角,根据上节课我们所学的圆周角定理可知,它们都等于圆心角∠AOC的一半,所以这几个圆周角相等.
[师]通过刚才同学的学习,我们上面提出的问题∠A=∠D或∠C=∠B找到答案了吗?
[生]找到了,它们属于同弧所对的圆周角.由于它们都等于同弧所对圆心角的一半,这样可知∠A=∠D或∠C=∠B.
[师]如果我们把上面的同弧改成等弧,结论一样吗?
[生]一样,等弧所对的圆心角相等,而圆周角等于圆心角的一半,这样,我们便可得到等弧所对的圆周角相等.
[师]通过我们刚才的探讨,我们可以得到一个推论.
在同圆或等圆中,同弧或等弧所对的圆周角相等.
[师]若将上面推论中的“同弧或等弧”改为“同弦或等弦”,结论成立吗?请同学们互相议一议.
[生]如图,结论不成立.因为一条弦所对的圆周角有两种可能,在弦不是直径的情况下是不相等的.
注意:(1)“同弧”指“同一个圆”.
(2)“等弧”指“在同圆或等圆中”.
(3)“同弧或等弧”不能改为“同弦或等弦”.
[师]接下来我们看下面的问题:
如图,BC是⊙O的直径,它所对的圆周角是锐角、直角,还是钝角?你是如何判断的?(同学们互相交流,讨论)
[生]直径BC所对的圆周角是直角,因为一条直径将圆分成了两个半圆,而半圆所对的圆心角是∠BOC=180°,所以∠BAC=∠90°.
[师]反过来,在图中,如果圆周角∠BAC=90°,那么它所对的弦BC经过圆心O吗?为什么?
[生]弦BC经过圆心O,因为圆周角∠BAC=90°.连结OB、OC,所以圆心角∠BOC=180°,即BOC是一条线段,也就是BC是⊙O的一条直径.
[师]通过刚才大家的交流,我们又得到了圆周角定理的又一个推论:
直径所对的圆周角是直角,90°的圆周角所对的弦是直径.
注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.
[师]为了进一步熟悉推论,我们看下面的例题.
[例]如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
[师生共析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.
下面哪位同学能叙述一下理由?
[生]BD=CD.理由是:
连结AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
即AD⊥BC.
又∵AC=AB,
∴BD=CD.
[师]通过我们学习圆周角定理及推论,大家互相交流,讨论一下,我们探索上述问题时,用到了哪些方法?试举例说明.
[生]在得出本节的结论过程中,我们用到了度量与证明的方法,比如说在研究同圆或等圆中,同弧或等弧所对的圆周角相等;还学到了分类与转化的方法.比如说在探索圆周角定理过程中,定理的证明应分三种情况,在这三种情况中,第一种情况是特殊情况,是证明的基础,其他两种情况都可以转化为第一种情况来解决,再比如说,学习圆周角定义时,可由前面学习列的圆心角类比得出圆周角的概念……
Ⅲ.巩固练习
1.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.
答:有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.
2.如下图,哪个角与∠BAC相等?
答:∠BDC=∠BAC.
3. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.
解:∵AB为⊙O的直径.
∴ACB=90°.
又∵∠ABC=30°,
∴AC=AB=×10=5(cm).
4.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?
答:图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.
Ⅳ.下面我们一起来看一个问题:做一做
船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,C表示一个危险临界点,∠ACB就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.
(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么?
(2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么?
分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB实际上就是圆周角,船P与两个灯塔的夹角为∠α,P有可能在⊙O外,P有可能在⊙O内,当∠α>∠C时,船位于暗礁区域内;当∠α<∠C时,船位于暗礁区域外,我们可采用反证法进行论证.
解:(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C时,船位于暗礁区域内(即⊙O内),理由是:
连结BE,假设船在(⊙O上,则有∠α=∠C,这与∠α>∠C矛盾,所以船不可能在⊙O上;假设船在⊙O外,则有∠α<∠AEB,即∠α<∠C,这与∠α>∠C矛盾,所以船不可能在⊙O外.因此.船只能位于⊙O内.
(2)当船与两个灯塔的夹角∠α小于“危险角” ∠C时,船位于暗礁区域外(即⊙O外).理由是:
假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.
注意:用反证法证明命题的一般步骤:
(1)假设命题的结论不成立;
(2)从这个假设出发,经过推理论证,得出矛盾.
(3)山矛盾判定假设不正确,从而肯定命题的结论正确.
Ⅴ.课时小结
本节课我们学习了圆周角定理的2个推论,结合我们上节课学到的圆周角定理,我们知道,在同圆或等圆中,根据弦及其所对的圆心角,弧,弦、弦心距之间的关系,实现了圆中这些量之间相等关系的转化,而圆周角定理建立了圆心角与圆周角之间的关系,因此,最终实现了圆中的角(圆心角和圆周角),线段(弦、弦心距)、弧等量与量之间相等关系的相等相互转化,从而为研究圆的性质提供了有力的工具和方法.
Ⅵ.课后作业
课本P24 习题5.6
Ⅶ.活动与探究
1.如下图,BC为⊙O的直径,AD⊥BC于D,P是弧AC上一动点,连结PB分别交AD、AC于点E、F.
(1)当弧PA=弧AB时,求证:AE=EB;
(2)当点P在什么位置时,AF=EF,证明你的结论.
[过程](1)连结AB.证AE=EB.需证∠ABE=∠BAE.
(2)执果索因寻条件:要AF=EF,即要∠A=∠AEF,而∠AEF=∠BED,而要∠A=∠BED,只需∠B=∠C,从而转化为弧PC=弧AB.
[结果](1)证明:延长AD交⊙O于点M,连结AB、BM.
∵BC为⊙O的直径,AD⊥BC于D.
∴弧AB=弧BM.
∴∠BAD=∠BMD.
又∵弧AB=弧AP,
∴∠ABP=∠BMD.
∴∠BAD=∠ABP.
∴AE=BE.
(2)当弧PC=弧AB时,AF=EF.
证明:∵弧PC=弧AB,
∴∠PBC=∠ACB.
而∠AEF=∠BED=90°-∠PBC,
∠EAF=90°-∠ACB.
∴∠AEF=∠EAF.
∴AF=EF.
备课资料
参考练习
1.若⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°.则∠BAC=_____
2.△ABC是半径为2 cm的圆内接三角形,若BC=2cm,则∠A的度数为 .
3.在⊙O中,直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,则BC= cm,AD= cm,BD= cm.
参考答案:
1.48°或132°
2.60°或120°
3.8 5 5
初中数学第三章 圆4 圆周角和圆心角的关系教学设计及反思: 这是一份初中数学<a href="/sx/tb_c10088_t8/?tag_id=27" target="_blank">第三章 圆4 圆周角和圆心角的关系教学设计及反思</a>,共7页。教案主要包含了创设情境 导入新课,自主学习 合作探究,引导反思 总结归纳,达标检测,评价反馈,布置作业,落实目标等内容,欢迎下载使用。
初中数学北师大版九年级下册4 圆周角和圆心角的关系教案设计: 这是一份初中数学北师大版九年级下册<a href="/sx/tb_c10088_t8/?tag_id=27" target="_blank">4 圆周角和圆心角的关系教案设计</a>,共7页。教案主要包含了创设情境,导入新课,合作学习,探究尝试,学以致用,巩固提高,系统小结,深化目标,当堂达标检测,布置作业等内容,欢迎下载使用。
鲁教版 (五四制)八年级上册第五章 平行四边形4 多边形的内角与外角和教案: 这是一份鲁教版 (五四制)八年级上册第五章 平行四边形4 多边形的内角与外角和教案,共5页。教案主要包含了学生起点分析,学任务分析,教学过程设计,教学反思等内容,欢迎下载使用。