终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    6.3《用频率估计概率》 教案01
    6.3《用频率估计概率》 教案02
    6.3《用频率估计概率》 教案03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    鲁教版 (五四制)九年级下册第六章 对概率的进一步认识3 用频率估计概率教案

    展开
    这是一份鲁教版 (五四制)九年级下册第六章 对概率的进一步认识3 用频率估计概率教案,共7页。教案主要包含了学生知识状况分析,教学任务分析,教学过程分析,教学反思等内容,欢迎下载使用。

    一、学生知识状况分析
    学生的知识技能基础:学生通过以前的学习,对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.
    学生的活动经验基础:经历了试验、统计过程,获得了用试验方法估计事件发生的概率的体验,并且在以前的数学学习活动中已经历了很多合作学习的过程,具有了一定的合作学习经验,具备了一定的合作与交流的能力.
    二、教学任务分析
    本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
    难点是试验估计随机事件发生的概率;关键是通过试验、统计活动,体会随机事件的概率。
    为此,本节课的教学目标是:
    1、知识与技能
    经历收集数据、进行试验、统计结果、合作交流的过程,估计一些复杂的随机事件发生的概率.
    2、过程与方法
    经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.
    3、情感、态度、价值观
    通过对贴近学生生活的有趣的生日问题的试验、统计,提高学生学习数学的兴趣,且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观.
    三、教学过程分析
    本节课设计了七个教学环节:一、课前准备;二、情境引入;三、探索新知;四、练习提高;五、课时小结;六、布置作业;七、活动探究.
    第一环节:课前准备(提前一周布置)
    内容:以6人合作小组为单位,开展调查活动:每人课外调查10个人的生日、生肖.
    目的:收集数据,为本节课的学习提供素材,在课堂中运用源于学生实际调查的真实数据展开教学,能极大地激发学生学习数学的兴趣及学习的积极性与主动性.另一方面,也锻炼了学生的社交能力.
    实际效果与注意事项:学生课外收集数据时有可能来自相同的人,各小组课前准备时,教师提醒尽量避免调查相同的人,最好每个小组的调查范围相对确定,如:初一、初二、初三等。
    第二环节:情境引入
    内容:《红楼梦》第62回中有这样的情节:
    当下又值宝玉生日已到,原来宝琴也是这日,二人相同。……
    袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作下揖去,说:原来今儿也是姐姐的芳诞.”平儿还福不迭。……
    探春忙问:“原来邢妹妹也是今儿,我怎么就忘了。”
    ……
    探春笑道:“倒有些意思,一年十二个月,月月有几人生日。人多了,便这等巧了,也有三个一日,两个一日的。……
    目的:以小说情节开篇,引人入胜,直接引入与生日有关的话题,激发学生的学习兴趣.
    实际效果:学生置身于情境之中,并陷入思考:为什么“便这等巧?”
    第三环节:探索新知
    经历试验、统计等活动过程,估计复杂随机事件(生日相同)的概率。
    内容:
    教师提出问题串
    (1)400位同学中,一定有2人的生日相同(可以不同年)吗?有什么依据呢?
    (2)300位同学中,一定有2人的生日相同(可以不同年)吗?
    (3)教师提出一个论断:“我认为咱们班50个同学中很可能就有2个同学的生日相同”你相信吗?
    对于问题(1),学生能给予肯定的回答“一定”,对于能力比较强的学生可以用“抽屉原理”加以解释。例如,有的学生会给出如下的解释:“一年最多366天,400个同学中一定会出现至少2人出生在同月同日,相当于400个物品放到366个抽屉里,一定至少有2个物品放在同一抽屉里—抽屉原理:把m个物品任意放进几个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个物品”。
    对于问题(2),学生会给出“不一定”的答案。
    对于问题(3),学生会表示怀疑,不太相信。
    于是,在班级课堂里展开现场的调查。得到数据后请学生反思:
    如果50个同学中有2人生日相同,能否说明50人中有2人生日相同的概率是1?
    如果50人中没有2人生日相同,就说明50人中2 人生日相同的概率为0?
    学生能根据以往的知识进行反思,并能举一些类似的问题作为例子。例如:
    随意抛掷一枚硬币,若国徽面朝上,说它的确概率为1,国徽面朝下的概率为0.显然是错误的,我们知道它们的概率均为0.5.
    随意抛掷一枚骰子,“6朝上”时我们说“6朝上”的概率为1,6朝下的概率为0,显然也是错误的,我们知道它们的概率为1/6.
    活动一,每个同学课外调查10人的生日,从全班的调查结果中随机选择50人,看有没有2人生日相同,设计方案估计50人中有2人生日有相同的概率.
    活动设计目的:通过具体收据数据、实验、统计结果过程,丰富学生的数学活动经验,对本节课有更直观的感知,经历用实验估计理论概率的过程,初步感受到生日相同的概率较大.
    设计方案:学生自主设计.
    附学生设计的方案:
    方案一:将每个同学调查的生日随机排列成一方阵,然后按某一规则从中选取50个数据进行实验(如25×20),从某行某列开始,自左而右,自上而下,,选出50个数).
    方案二:把全班每个同学所调查的数据写在纸条上,放在箱子里随机抽取.
    方案三:从50个同学手里随机抽取一个调查数据,组成50个数据.
    方案四:全班分成10个小组,把每个小组调查数据放在一起,打乱次序,随机抽取5个,然后10个小组的结果放在一组成50个数据.
    活动过程指导:
    (1)节约时间,生日表示方式简化成四位数.如“0217”
    (2)人人参与,大胆发言、交流、讨论从大量的重复试验活动中感受生日相同的概率较大.
    (3)激励学生提出更好的活动方案,如:产生1~365之间某一自然数随机数的方法;分工制作1~365自然数卡片,放入纸箱随机抽取一张,记下号码,放回去,再随机抽取,直至抽出50张,多次重复试验,并估计出50人中有2人生日相同的概率,此为模拟试验.
    活动评价指导:
    (1)学生的参与程度,活动过程中的思维方式,与同学合作交流情况.
    (2)鼓励思维多样性.
    (3)关注学生能否用实验方法估计一些较复杂随机事件发生的概率.
    (4)关注学生对概率的理解是否全面.
    (5)关注实验次数.
    实际效果:通过以上探索活动,经历了大量重复试验,能估算出50人中有2人生日相同的概率是多少.约0.9704,很大.
    结果可解释《红楼梦》生日相同“遇的巧”的问题.
    这个结果出人意料之处就在于其结果违反了人们的直觉:人们往往觉得两人生日相同是一种可能性不大的事情,计算结果却是:如果人数不少于是23人,这种可能性就达50%.看下表是“几个人中至少有2人生日相同”的概率大小表:
    第四环节:练习提高
    内容:课本P84、87随堂练习
    课外调查的10个人的生肖分别是什么?他们中有2人的生肖相同吗?6个人中呢?利用全班的调查数据设计一个方案,估计6个人中有2个人生肖相同的概率.
    目的:本问题与前面生日问题类似,借助于课外调查的数据再次进行有关问题的概率估算,丰富数学活动经验,直观感受较复杂事件的概率问题.
    设计方案:模仿生日问题,学生自主设计,以上方案仅供参考.
    方案一:全班分6人一小组试验(多出人员可一人当2人,3人),每人随机写下自己调查的一个生肖,小组长汇总收集数据,统计结果,课代表收集全班数据,估算6人中有2人生肖相同的概率.
    方案二:将全班调查好所有结果写在纸条上,放进箱子里随机抽取6张.
    方案三:生肖结果用数字代替排成方阵.
    活动过程指导:
    (1)简化过程,把生肖按顺序用1-12个数据代替.
    (2)鼓励学生积极大胆发表自己的见解.
    (3)在讨论、交流过程中使学生进一步感受大量重复试验中频率稳定于概率的意义.
    (4)激励学生探索该问题的模拟试验.
    活动评价指导:
    (1)主要是积极评价,鼓励学生思维的多样性.
    (2)看学生能否用试验的方法估计一些复杂随机事件的概率.
    (3)关注学生对概率意义的理解是否全面.
    (4)此问题的理论概率约0.78,在此不要求学生把结果精确到那一位.
    第五环节:课时小结
    内容:师生共同总结本节内容
    目的:回顾本节教学目标
    学生先自我总结,然后师生共析:
    本节课经历了调查、收集数据、整理数据、进行试验、统计结果,合作交流的过程,知道了用大量的实验频率来估计,一些复杂的随机事件的概率,当试验次数赵多时,实验频率稳定于理论概率,还知道了“直觉并不可靠”,本节“生日相同的概率”50人中有2人生日相同的概率竟高达0.97,这有违我们的“常识”。实际上,生活中有很多类似巧合,实则平凡且极为平凡的现象,如果我们从科学的角度通过实验估计随机事件发生的概率,用知识来武装我们的头脑,我们就会“透过现象看本质”,也不会受别有用心的人的欺骗,从而破除迷信,树立正确的唯物主义世界观.
    第六环节:布置作业
    1、课本习题
    2、收集有关概率的文章
    第七环节:活动探究
    本环节对学生的思维要求较高,仅供给部分学有余力的学生阅读和提高,并非对全体同学的要求。
    内容:
    1、用“树状图”原理,求班上60名同学中至少有2人生日相同的概率
    先求出“60人中没有两人生日相同的概率”
    365×364×363×…×306
    P(A)= —————————————— =0.0059
    365×365×365×…×365
    则60人中有2人生日相同的概率为:
    P=1-P(A)=1-0.0059=0.9941
    即“60人中有2人生日相同的概率”为0.9941
    如果班人有45人或55人等,可类似地进行计算
    2、用“树状图”原理,求6人中至少有2人生肖相同的概率
    先求出“6人中没有2人生日相同的概率”:
    12×11×10×9×8×7
    P(A)= ——————————— =0.22
    12×12×12×12×12×12
    则“6人中有2人生肖相同的概率”为:
    P=1-P(A)=1-0.22=0.78
    目的:巩固并拓展学生学习应用知识的能力.
    四、教学反思
    1、教材是教与学的素材,可以充分利用、拓展、丰富、创新.本节课教材提出的生日相同的问题,教师可充分发挥学生的想象能力,发散思维,设计多种多样的活动方案,完成本节教学任务,更重要的是发展学生的学习能力,合作与交流的能力.
    2、学生是学习的主体,课堂也就应以学生为主体,教师起主导作用,多用积极的评价、恰当的引导,激发学生的学习兴趣,提高学习数学的积极性、主动性,让学生成为课堂学习的主人.
    3、应注意的问题:①由于设计活动方案各异,可能时间上会紧张,需要在活动过程中老师加以引导,以便节省时间,按计划完成本节课教学任务.②对学困生在小组里的表现应予以更多关注,多鼓励其参与,并给予指导,使其完成一些力所能及的任务,产生成就感.n
    p
    n
    p
    n
    p
    n
    p
    n
    p
    20
    0.4114
    29
    0.6810
    38
    0.8641
    47
    0.9548
    56
    0.9883
    21
    0.4437
    30
    0.7105
    39
    0.8781
    48
    0.9606
    57
    0.9901
    22
    0.4757
    31
    0.7305
    40
    0.8912
    49
    0.9658
    58
    0.9917
    23
    0.5073
    32
    0.7533
    41
    0.9032
    50
    0.9704
    59
    0.9930
    24
    0.5383
    33
    0.7750
    42
    0.9140
    51
    0.9744
    60
    0.9941
    25
    0.5687
    34
    0.7953
    43
    0.9239
    52
    0.9780


    26
    0.5982
    35
    0.8144
    44
    0.9329
    53
    0.9811


    27
    0.6269
    36
    0.8322
    45
    0.9410
    54
    0.9839


    28
    0.6545
    37
    0.8487
    46
    0.9483
    55
    0.9836


    相关教案

    沪科版九年级下册26.3 用频率估计概率教案及反思: 这是一份沪科版九年级下册26.3 用频率估计概率教案及反思,共4页。教案主要包含了教学目标,教学重难点,教学过程,板书设计等内容,欢迎下载使用。

    2021学年2 用频率估计概率教案设计: 这是一份2021学年2 用频率估计概率教案设计,共4页。教案主要包含了引入,做一做,例题分析,课内练习,课堂小结,作业等内容,欢迎下载使用。

    2021学年25.3 用频率估计概率第二课时教案设计: 这是一份2021学年25.3 用频率估计概率第二课时教案设计,共6页。教案主要包含了复习引入,探索新知,巩固练习,应用拓展,归纳小结,布置作业等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        6.3《用频率估计概率》 教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map