苏教版选修2第三章 数系的扩充与复数的引入综合与测试课后作业题
展开
这是一份苏教版选修2第三章 数系的扩充与复数的引入综合与测试课后作业题,共3页。试卷主要包含了1数系的扩充, 知识与技能, 过程与方法,自然数的全体构成自然数集N,复数的定义,复数集与其它数集之间的关系, 两个复数相等的定义等内容,欢迎下载使用。
扬州中学西区高二数学教案( )主备人胡广宏授课人 授课日期 课题§3.1数系的扩充课型新授教学目的:1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立教学过程 备课札记学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数讲解新课:1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-! 3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=14.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示* 3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:NZQRC.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d 复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小 讲解范例:例1请说出复数4,的实部和虚部,有没有纯虚数? 例2实数m取什么数值时,复数z=m(m-1)+1+(m-1)i是:(1)实数? (2)虚数? (3)纯虚数? 例3 已知(x+y)+(x-2y)i=(2x-5)+(3x+y)i,其中x,y∈R,求x与y. 巩固练习:1.若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.2.已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R; (2)z是虚数;(3)z是纯虚数;(4)z=+4i.答案:1. 解:方程化为(x2+mx+2)+(2x+m)i=0.∴,∴x=-,∴∴m2=8,∴m=±2.2. 解:(1)m须满足解之得:m=-3.(2)m须满足m2+2m-3≠0且m-1≠0,解之得:m≠1且m≠-3.(3)m须满足解之得:m=0或m=-2.(4)m须满足解之得:m∈ 课后作业:课本第105页 习题3.1 1 , 2 , 3 w.w.w.k.s.5.u.c.o.m www.ks5u.com
相关试卷
这是一份高中数学人教版新课标A选修2-23.1数系的扩充和复数的概念课后复习题,共6页。试卷主要包含了1综合拔高练等内容,欢迎下载使用。
这是一份高中数学苏教版选修2第三章 数系的扩充与复数的引入综合与测试课时练习,共4页。
这是一份数学苏教版第三章 数系的扩充与复数的引入综合与测试随堂练习题,共1页。试卷主要包含了数的发展过程,虚数单位的引入,复数及其相关概念,两个复数相等的定义等内容,欢迎下载使用。