年终活动
搜索
    上传资料 赚现金

    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案

    立即下载
    加入资料篮
    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案第1页
    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案第2页
    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案第3页
    还剩9页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案

    展开

    这是一份新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(含解析) 学案,共12页。

    知识点一 向量的夹角
    知识点二 向量数量积的概念
    知识点三 投影向量
    如图1,设a,b是两个非零向量,eq \(AB,\s\up16(→))=a,eq \(CD,\s\up16(→))=b,我们考虑如下的变换:过eq \(AB,\s\up16(→))的起点A和终点B,分别作eq \(CD,\s\up16(→))所在直线的垂线,垂足分别为A1,B1,得到eq \(A1B1,\s\up16(→)),我们称上述变换为向量a向向量beq \(□,\s\up4(01))投影,eq \(A1B1,\s\up16(→))叫做向量a在向量b上的eq \(□,\s\up4(02))投影向量.
    如图2,我们可以在平面内任取一点O,作eq \(OM,\s\up16(→))=a,eq \(ON,\s\up16(→))=b.过点M作直线ON的垂线,
    垂足为M1,则eq \(OM1,\s\up16(→))就是向量a在向量b上的投影向量.
    知识点四 向量的数量积的性质和运算律
    (1)向量的数量积的性质
    设a,b是非零向量,它们的夹角是θ,e是与b方向相同的单位向量,则
    ①a·e=e·a=eq \(□,\s\up4(01))|a|csθ.
    ②a⊥b⇔eq \(□,\s\up4(02))a·b=0.
    ③当a与b同向时,a·b=eq \(□,\s\up4(03))|a||b|.
    当a与b反向时,a·b=eq \(□,\s\up4(04))-|a||b|.
    ④a·a=eq \(□,\s\up4(05))|a|2或|a|=eq \r(a·a)=eq \r(a2).
    ⑤csθ=eq \(□,\s\up4(06))eq \f(a·b,|a||b|).
    ⑥|a·b|eq \(□,\s\up4(07))≤|a||b|.
    (2)向量数量积的运算律
    ①eq \(□,\s\up4(08))a·b=b·a(交换律).
    ②(λa)·b=eq \(□,\s\up4(09))λ(a·b)=eq \(□,\s\up4(10))a·(λb)(结合律).
    ③eq \(□,\s\up4(11))(a+b)·c=a·c+b·c(分配律).
    1.对数量积的理解
    (1)求a,b的数量积需知道三个量,即|a|,|b|及a,b的夹角,这三个量有时并不是直接给出来的,需根据题意去巧妙求解.
    (2)两个向量的数量积是两个向量之间的运算,其结果不再是向量,而是数量,它的符号由夹角确定,当夹角为锐角或0时,符号为正;当夹角为钝角或π时,符号为负;当夹角为直角时,其值为零.
    向量的投影是一个数量,不是向量,其值可为正,可为负,也可为零.
    (3)两个向量a,b的数量积与代数中两个数a,b的乘积ab是两码事,但表面看来又有点相似,因此要注意两个向量a,b的数量积是记作a·b,中间的实心小圆点不能省略,也不能把实心小圆点用乘号“×”代替,写成a×b.
    2.要灵活掌握向量数量积的性质
    (1)a⊥b⇔a·b=0,既可以用来证明两向量垂直,也可以由垂直进行有关计算.
    (2)a·a=a2=|a|2与|a|=eq \r(|a|2)=eq \r(a2)也用来求向量的模,以实现实数运算与向量运算的相互转化.
    (3)用csθ=eq \f(a·b,|a||b|)求两向量的夹角,且夹角的取值与a·b的符号有关.
    设两个非零向量a与b的夹角为θ,则
    当θ=0时,csθ=1,a·b=|a||b|;
    当θ为锐角时,csθ>0,a·b>0;
    当θ为钝角时,csθ0,∴eq \(BA,\s\up16(→))·eq \(BC,\s\up16(→))=-eq \(AB,\s\up16(→))·eq \(BC,\s\up16(→))

    相关学案

    新教材(辅导班)高一数学寒假讲义06《6.1.1-1.3平面向量的概念》课时精讲(含解析) 学案:

    这是一份新教材(辅导班)高一数学寒假讲义06《6.1.1-1.3平面向量的概念》课时精讲(含解析) 学案,共10页。

    新教材(辅导班)高一数学寒假讲义11《6.3.4平面向量数乘运算的坐标表示》课时(含解析) 学案:

    这是一份新教材(辅导班)高一数学寒假讲义11《6.3.4平面向量数乘运算的坐标表示》课时(含解析) 学案,共11页。

    新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(原卷版)学案:

    这是一份新教材(辅导班)高一数学寒假讲义09《6.2.4向量的数量积》课时(原卷版)学案,共9页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map