高中数学沪教版高中一年级 第二学期4.6对数函数的图像与性质学案设计
展开这是一份高中数学沪教版高中一年级 第二学期4.6对数函数的图像与性质学案设计,共5页。学案主要包含了教学目标,教学重点与难点,教学过程等内容,欢迎下载使用。
6.5最简三角方程(2)
【教学目标】
1.会解简单的三角方程(形如,,等).
[说明]把简单的三角方程转化为最简单的三角方程,一是要掌握基本方法,二是要合理选用公式和变换方法.其基本的转化方法有:(1)化为同角、同名的三角函数;(2)因式分解法;(3)化为、的齐次式;(4)引入辅助角.
2.利用函数的图像解与三角函数有关的方程问题.
【教学重点与难点】
重点:简单的三角方程转化为最简单的三角方程基本方法与合理选用公式和变换方法;
难点:简单的三角方程转化为最简单的三角方程的过程中合理选用公式和变换方法,及含有字母三角方程的实数解讨论.
【教学过程】
1.概念辨析
已知三角函数值求角(实际上是求解最简三角方程),要熟练掌握最简三角方程的解集,并在理解的基础上熟记下表:
方程 | 方程的解集 | |
把简单的三角方程转化为最简单的三角方程,一是要掌握基本方法,二是要合理选用公式和变换方法.其基本的转化方法有:
(1)可化为同角、同名的三角函数的方程,通常用解代数方程的方法,转化为最简的三角方程;
(2)一边可以分解,而另一边为零的方程,通常用因式分解法,转化为最简的三角方程;
(3)关于、的齐次方程,,通常化为关于的方程。再用解代数方程的方法,转化为关于最简的三角方程;
(4)形如的方程,通常是引入辅助角,化原方程为.当时,方程有解.
2.例题分析
例1、解方程.
解:原方程可化为 ,即.
解这个关于的二次方程,得,.
由,得解集为;由,得解集为.
所以原方程的解集为.
[说明]方程中的可化为,这样原方程便可看成以为未知数的一元二次方程,当时,可用因式分解将原方程转化成两个最简方程,从而求得它们的解.
例2、解方程.
解一 因为(使的的值不可能满足原方程),所以在方程的两边同除以,得 .
解关于的二次方程,得,.
由,得解集为;
由,得解集为.
所以原方程的解集为.
[说明]若方程的每一项关于的次数都是相同的(本题都是二次),那么这样的方程叫做关于的齐次方程.它的解法一般是,先化为只含有未知数的正切函数的三角方程,然后求解.
解二 降次得 ,
化简得 .因为(使的的值不可能满足原方程),所以在方程的两边同除以,得.
由,得 ,即.
所以原方程的解集为.
[说明]由于转化方法的不同,所得解集的表达形式不同,但当是偶数时,变成;当是奇数时,变成,所以实质上与是相等的集合.
解三 降次得 ,
化简得 ,即 ,
得 ,即.
所以原方程的解集为.
[说明]一般说来,对于形如的三角方程,可先在方程的两边都除以,然后引入辅助角,原方程变形为.当时,方程有解.
例3、若方程存在实数解,求的取值范围.
解一 由原方程,得 ,
即
解这个以为未知数的一元二次方程,因为
要使方程有解,只需
解得.
所以的取值范围为.
[说明] 有关三角方程的实数解问题,不仅要考虑以为未知数的一元二次方程的,而且必须考虑的值在内.
解二 由原方程得 ,
得
因为,所以.
所以的取值范围为.
[说明] 当方程有解时,必须满足,则原题就转化为求的最大值、最小值问题.
3.问题拓展
例4、求方程的解集.
解一 由原方程得,
得 ,,由,得解集为;
由,得解集为.
所以原方程的解集为.
解二 由原方程得,即,
得或,
即或,.
所以原方程的解集为.
解三 由原方程得,即,
得或,即或,.
所以原方程的解集为.
[说明] 由于转化方法的不同,所得解集的表达形式不同,通过验证这些解集是相等的集合.对于两个相等的同名三角函数所组成的三角方程,可直接利用以下关系得到方程的解.
(1),则或;
(2),则或;
(3),则.
三、巩固练习
1、解下列方程的解集:
(1);(2).
2、关于x的方程有实数解,求实数k的取值范围.
3、求方程的解集.
4、已知函数,
(1)化简,并求;(2)若,,求.
四、课堂小结
本节课的内容是把简单的三角方程转化为最简三角方程。掌握基本方法与合理选用公式和变换方法是本节课的重点.含有字母三角方程的实数解讨论是本节课的难点.
五、蓝面书
相关学案
这是一份高中数学沪教版高中一年级 第二学期4.6对数函数的图像与性质导学案,共2页。学案主要包含了教学目标,教学重点与难点,教学过程等内容,欢迎下载使用。
这是一份高中数学沪教版高中一年级 第二学期4.6对数函数的图像与性质导学案,共6页。学案主要包含了教学目标,教学重点与难点,教学过程等内容,欢迎下载使用。
这是一份高中数学沪教版高中一年级 第二学期4.6对数函数的图像与性质学案,共6页。学案主要包含了教学目标,教学重点与难点,教学过程等内容,欢迎下载使用。