年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理

    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第1页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第2页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第3页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第4页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第5页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第6页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第7页
    2012届高考数学(理科)一轮复习课件(人教版)第11单元第67讲 二项式定理第8页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标B1.3.1二项式定理复习课件ppt

    展开

    这是一份人教版新课标B1.3.1二项式定理复习课件ppt,共29页。PPT课件主要包含了易错点,二项式定理,展开式,n+1,an-rbr,常数部分,等距离,素材1,素材2,素材3等内容,欢迎下载使用。
    1.掌握二项式定理及其通项公式,并会利用二项式定理及其通项公式解决有关多项式化简和展开式的项或项的系数相关的问题.2.掌握二项式系数的相关性质,会求展开式的系数和,能利用二项式定理进行近似计算、证明整除问题,证明不等式等综合问题.
    1.二项式定理(a+b)n=① . .这个公式所表示的定理叫做② ,右边的多项式叫做(a+b)n的③ .特别地,(1±x)n=④ .2.展开式的特点(1)共有⑤ 项.
    an+ an-1b1+ an-2b2+…
    + an-rbr+…+ bn(n∈N*)
    (2)各项的次数和都等于二项式的幂指数⑥ ,即a与b的指数和为n.(3)字母a按⑦ 排列,从第一项开始,次数由⑧ 逐项减1直到⑨ ,字母b按⑩ 排列,从第一项起,次数由 逐项增1直到 .(4)二项式的系数依次为 , ,…, , .3.二项式的展开式的通项二项式展开式的第r+1项是Tr+1= .
    4.二项式系数与展开式的系数第r+1项的二项式系数即 ,而展开式的第r+1项系数是该项的 (含项的性质符号),是两个不同的概念.5.二项式系数的性质(1)二项式系数的结构规律和等量关系.在二项展开式中,与首末两端 “ ”的两项的二项式系数相等,即 .
    (2)二项式系数的大小规律.如果二项式的幂指数是偶数,中间一项即 的二项式系数最大;如果二项式的幂指数是奇数;中间两项即 与 的二项式系数相等且最大.(3)二项式系数的和 .当n为偶数时, + + +…+ = .当n为奇数时, + + +…+ = .
    设f(x)是定义在R上的一个给定的函数,函数g(x)= f( )x0(1-x)n+ f( )x(1-x)n-1 + f( )x2(1-x)n-2+…+ f( )xn(1-x)0(x≠0,1). (1)当f(x)=1时,求g(x); (2)当f(x)=x时,求g(x).
    (1)当f(x)=1时,g(x)= ·(1-x)n+ ·x(1-x)n-1+…+ ·xn=[(1-x)+x]n=1.(2)当f(x)=x时,g(x)= · ·(1-x)n+ · x·(1-x)n-1+…+ · ·xn.因为 · = ,所以g(x)= x·(1-x)n-1+ x2·(1-x)n-2+…+ ·xn=x[ (1-x)n-1+ x(1-x)n-2+…+ ·xn-1]=x·[(1-x)+x]n-1=x.
    若n∈N且n>1,求证:2<(1+ )n<3.
    (1+ )n=1+ · + · +…+ · >1+ · =2.又(1+ )n=2+ +  +…+<2+ + +…+ <2+ + +…+=2+ =3- <3,故原不等式成立.
    1.二项式定理的应用常见的问题有:求展开式的某一项或适合某种条件的项;求展开式各项系数的和;取二项展开式的前几项进行近似计算;证明组合数等式;整数与整式的整除问题;证明不等式.因此必须牢固掌握二项展开式及其通项公式的结构与特征、二项式系数的性质等基本理论.
    2.关注二项式定理问题“四大热点、六条规律”.(1)四大热点是:①通项运用型;②系数配对型;③系数和差型;④综合应用型.(2)六条规律是:①常规问题通项分析法;②系数配对型问题分配法;③系数和差型问题赋值法;④近似问题截项法;⑤整除(或余数)问题展开法;⑥最值问题不等式法.

    相关课件

    高中数学人教版新课标A必修4第三章 三角恒等变换综合与测试复习ppt课件:

    这是一份高中数学人教版新课标A必修4第三章 三角恒等变换综合与测试复习ppt课件

    人教版新课标A必修3第二章 统计综合与测试复习课件ppt:

    这是一份人教版新课标A必修3第二章 统计综合与测试复习课件ppt

    高中数学2.1合情推理与演绎推理复习ppt课件:

    这是一份高中数学2.1合情推理与演绎推理复习ppt课件,共41页。PPT课件主要包含了两直线平行内错角相等,∠A和∠B是内错角,∠A∠B等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map