高中数学1.1 正弦定理和余弦定理教学设计
展开福建省长乐第一中学高中数学必修五《1.1.1 正弦定理》教案
第一课时 1.1.1 正弦定理
教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.
教学重点:正弦定理的探索和证明及其基本应用.
教学难点:已知两边和其中一边的对角解三角形时判断解的个数.
教学过程:
一、复习准备:
1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?
2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理
二、讲授新课:
1. 教学正弦定理的推导:
①特殊情况:直角三角形中的正弦定理: sinA= sinB= sinC=1 即c=.
② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)
当ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义,有,则. 同理,(思考如何作高?),从而.
③*其它证法:证明一:(等积法)在任意斜△ABC当中S△ABC=.
两边同除以即得:==.
证明二:(外接圆法)如图所示,∠A=∠D,∴,
同理 =2R,=2R.
证明三:(向量法)过A作单位向量垂直于,由+=边同乘以单位向量 得…..
④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值.
2.教学例题:
① 出示例1:在中,已知,,cm,解三角形.
分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两角一边
② 出示例2:.
分析已知条件 → 讨论如何利用边角关系 → 示范格式 → 小结:已知两边及一边对角
③ 练习:.
在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)
④ 讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?
3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论.
三、巩固练习:
1.已知ABC中,A=60°,,求.
2. 作业:教材P5 练习1 (2),2题.
2020-2021学年1.2 应用举例教案: 这是一份2020-2021学年1.2 应用举例教案,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。
2021学年1.2 应用举例教案: 这是一份2021学年1.2 应用举例教案,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。
人教版新课标A必修51.2 应用举例教案设计: 这是一份人教版新课标A必修51.2 应用举例教案设计,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。