|教案下载
终身会员
搜索
    上传资料 赚现金
    高二新课程数学《3.2.1复数代数形式的加、减运算及其几何意义》教案(新人教A版)选修2-2
    立即下载
    加入资料篮
    高二新课程数学《3.2.1复数代数形式的加、减运算及其几何意义》教案(新人教A版)选修2-201
    高二新课程数学《3.2.1复数代数形式的加、减运算及其几何意义》教案(新人教A版)选修2-202
    高二新课程数学《3.2.1复数代数形式的加、减运算及其几何意义》教案(新人教A版)选修2-203
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A选修2-23.2复数代数形式的四则运算教案设计

    展开
    这是一份人教版新课标A选修2-23.2复数代数形式的四则运算教案设计,共6页。

    §3.2.1复数代数形式的加减运算及几何意义
    教学目标:
    知识与技能:掌握复数的加法运算及意义
    过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义
    情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用
    教学重点:复数加法运算,复数与从原点出发的向量的对应关系.
    教学难点:复数加法运算的运算率,复数加减法运算的几何意义。
    教具准备:多媒体、实物投影仪 。
    教学设想:复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定.
    教学过程:
    学生探究过程:
    1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
    2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-
    3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
    4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
    3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
    4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
    5.复数集与其它数集之间的关系:NZQRC.
    6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
    一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
    7. 复平面、实轴、虚轴:
    点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴
    实轴上的点都表示实数
    对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数
    复数集C和复平面内所有的点所成的集合是一一对应关系,即
    复数复平面内的点
    这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.
    这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法
    8.若,,则
    9. 若,,则,
    两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
    10. 若,,则
    一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
    即 ==( x2, y2)  (x1,y1)= (x2 x1, y2 y1)
    讲解新课:
    一.复数代数形式的加减运算
    1.复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
    2. 复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
    3. 复数的加法运算满足交换律: z1+z2=z2+z1.
    证明:设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R).
    ∵z1+z2=(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i.
    z2+z1=(a2+b2i)+(a1+b1i)=(a2+a1)+(b2+b1)i.
    又∵a1+a2=a2+a1,b1+b2=b2+b1.
    ∴z1+z2=z2+z1.即复数的加法运算满足交换律.
    4. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
    证明:设z1=a1+b1i.z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
    ∵(z1+z2)+z3=[(a1+b1i)+(a2+b2i)]+(a3+b3i)
    =[(a1+a2)+(b1+b2)i]+(a3+b3)i
    =[(a1+a2)+a3]+[(b1+b2)+b3]i
    =(a1+a2+a3)+(b1+b2+b3)i.
    z1+(z2+z3)=(a1+b1i)+[(a2+b2i)+(a3+b3i)]
    =(a1+b1i)+[(a2+a3)+(b2+b3)i]
    =[a1+(a2+a3)]+[b1+(b2+b3)]i
    =(a1+a2+a3)+(b1+b2+b3)i
    ∵(a1+a2)+a3=a1+(a2+a3),(b1+b2)+b3=b1+(b2+b3).
    ∴(z1+z2)+z3=z1+(z2+z3).即复数的加法运算满足结合律
    讲解范例:
    例1计算:(5-6i)+(-2-i)-(3+4i)
    解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i
    例2计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)
    解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.
    解法二:∵(1-2i)+(-2+3i)=-1+i,
    (3-4i)+(-4+5i)=-1+i,
    ……
    (2001-2002i)+(-2002+2003)i=-1+i.
    相加得(共有1001个式子):
    原式=1001(-1+i)+(2003-2004i)
    =(2003-1001)+(1001-2004)i=1002-1003i
    二.复数代数形式的加减运算的几何意义
    复数的加(减)法 (a+bi)±(c+di)=(a±c)+(b±d)i.
    与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减).
    1.复平面内的点平面向量
    2. 复数平面向量
    3.复数加法的几何意义:
    设复数z1=a+bi,z2=c+di,在复平面上所对应的向量为、,即、的坐标形式为=(a,b),=(c,d)以、为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量是,
    ∴= +=(a,b)+(c,d)=(a+c,b+d)=(a+c)+(b+d)i
    4. 复数减法的几何意义:复数减法是加法的逆运算,设z=(a-c)+(b-d)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,为一条边画平行四边形,那么这个平行四边形的另一边OZ2所表示的向量就与复数z-z1的差(a-c)+(b-d)i对应由于,所以,两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
    例3已知复数z1=2+i,z2=1+2i在复平面内对应的点分别为A、B,求对应的复数z,z在平面内所对应的点在第几象限?
    解:z=z2-z1=(1+2i)-(2+i)=-1+i,
    ∵z的实部a=-1<0,虚部b=1>0,
    ∴复数z在复平面内对应的点在第二象限内.
    点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即所表示的复数是zB-zA. ,而所表示的复数是zA-zB,故切不可把被减数与减数搞错尽管向量的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关
    例4 复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.
    分析一:利用,求点D的对应复数.
    例2图
    解法一:设复数z1、z2、z3所对应的点为A、B、C,正方形的第四个顶点D对应的复数为x+yi(x,y∈R),是:
    =(x+yi)-(1+2i)=(x-1)+(y-2)i;
    =(-1-2i)-(-2+i)=1-3i.
    ∵,即(x-1)+(y-2)i=1-3i,
    ∴解得
    故点D对应的复数为2-i.
    分析二:利用原点O正好是正方形ABCD的中心来解.
    解法二:因为点A与点C关于原点对称,所以原点O为正方形的中心,于是(-2+i)+
    (x+yi)=0,∴x=2,y=-1.
    故点D对应的复数为2-i.
    点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用
    巩固练习:
    1.已知复数z1=2+i,z2=1+2i,则复数z=z2-z1在复平面内所表示的点位于
    A.第一象限B.第二象限 C.第三象限D.第四象限
    2.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD所对应的复数是
    A.5-9iB.-5-3i C.7-11iD.-7+11i
    3.已知复平面上△AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,则以OA、OB为邻边的平行四边形的对角线长为
    A.3B.2C.2D.
    4.复平面上三点A、B、C分别对应复数1,2i,5+2i,则由A、B、C所构成的三角形是
    A.直角三角形B.等腰三角形 C.锐角三角形D.钝角三角形
    5.一个实数与一个虚数的差( )
    A.不可能是纯虚数 B.可能是实数
    C.不可能是实数 D.无法确定是实数还是虚数
    6.计算(-=____.
    7.计算:(2x+3yi)-(3x-2yi)+(y-2xi)-3xi=________(x、y∈R).
    8.计算(1-2i)-(2-3i)+(3-4i)-…-(2002-2003i).
    9.已知复数z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分别对应向量、(O为原点),若向量对应的复数为纯虚数,求a的值.
    解:对应的复数为z2-z1,则
    z2-z1=a-1+(a2+2a-1)i-[a2-3+(a+5)i]=(a-a2+2)+(a2+a-6)i
    ∵z2-z1是纯虚数
    ∴ 解得a=-1.
    10.已知复平面上正方形的三个顶点是A(1,2)、B(-2,1)、C(-1,-2),求它的第四个顶点D对应的复数.
    解:设D(x,y),则
    对应的复数为(x+yi)-(1+2i)=(x-1)+(y-2)i
    对应的复数为:(-1-2i)-(-2+i)=1-3i
    ∵ ∴(x-1)+(y-2)i=1-3i
    ∴,解得
    ∴D点对应的复数为2-i。
    答案:1.B 2.C 3.A 4.A 5.C 6.-2i 7.(y-x)+5(y-x)i
    8.解:原式=(1-2+3-4+…+2001-2002)+(-2+3-4+…-2002+2003)i
    =-1001+1001i
    课后作业:课本第112页 习题3.2 1 , 2 , 3
    教学反思:
    如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
    一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
    复数的加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i(a,b,c,d∈R). 复数的加法,可模仿多项式的加法法则计算,不必死记公式。
    复数加法的几何意义:如果复数z1,z2分别对应于向量、,那么,以OP1、OP2为两边作平行四边形OP1SP2,对角线OS表示的向量就是z1+z2的和所对应的向量 复数减法的几何意义:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
    相关教案

    高中数学人教版新课标B选修2-23.2.1复数的加法与减法教案: 这是一份高中数学人教版新课标B选修2-23.2.1复数的加法与减法教案,共7页。教案主要包含了学情分析,教学目标,教学重点,教学难点,课前准备,教学过程设计等内容,欢迎下载使用。

    2021学年3.2.1复数的加法与减法教学设计: 这是一份2021学年3.2.1复数的加法与减法教学设计,共14页。教案主要包含了问题导思,思路探究,自主解答,思路点拨,规范解答等内容,欢迎下载使用。

    数学选修2-23.2.1复数的加法与减法教案: 这是一份数学选修2-23.2.1复数的加法与减法教案,共2页。教案主要包含了复习准备,讲授新课,巩固练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map