高中数学1.4生活中的优化问题举例教学设计及反思
展开1.4 生活中的优化问题(二)
教学目标:掌握利用导数求函数最大值和最小值的方法.会求一些实际问题(一般指单峰函数)的最大值和最小值.---------用材最省的问题----
教学重点:利用导数求函数最值的方法.用导数方法求函数最值的方法步骤
教学难点:对最值的理解及与极值概念的区别与联系.求一些实际问题的最大值与最小值
教学过程:
例1圆柱形金属饮料罐的容积一定时,它的高与底半径应怎样选取,才能使所用材料最省?
解:设圆柱的高为h,底半径为R,则表面积 S=2Rh+2R2.
则
从而 即h=2R.
因为S(R)只有一个极值,所以它是最小值. 答:当罐的高与底直径相等时,所用材料最省.
例2 已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的
函数关系式为求产量q为何值时,利润L最大.
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:
求得唯一的极值点 q=84.
因为L只有一个极值,所以它是最大值.
答:产量为84时,利润L最大.
练习1.某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,应如何定价才能使利润最大?
例3.教材P34面的例2
课后作业
高中人教版新课标A1.4生活中的优化问题举例教案: 这是一份高中人教版新课标A1.4生活中的优化问题举例教案,共2页。
数学1.4生活中的优化问题举例教案设计: 这是一份数学1.4生活中的优化问题举例教案设计,共1页。
人教版新课标A选修2-22.1合情推理与演绎推理教案: 这是一份人教版新课标A选修2-22.1合情推理与演绎推理教案,共9页。