2021年人教版数学九年级上册期末复习试卷六(含答案)
展开
这是一份2021年人教版数学九年级上册期末复习试卷六(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年人教版数学九年级上册期末复习试卷一、选择题1.方程﹣5x2=1的一次项系数是( )A.3 B.1 C.﹣1 D.02.下面的图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.用配方法解方程x2﹣8x+11=0,则方程可变形为( )A.(x+4)2=5 B.(x﹣4)2=5 C.(x+8)2=5 D.(x﹣8)2=54.下列事件中必然发生的事件是( )A.一个图形平移后所得的图形与原来的图形不全等 B.不等式的两边同时乘以一个数,结果仍是不等式 C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品 D.随意翻到一本书的某页,这页的页码一定是偶数5.已知圆锥的底面半径是3,母线长为6,则该圆锥侧面展开后所得扇形的圆心角为( )A.60° B.90° C.120° D.180°6.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于( )A.﹣1 B.0 C.1 D.27.将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( )A.96 B.69 C.66 D.998.对称轴是直线x=﹣2的抛物线是( )A.y=﹣x2+2 B.y=x2+2 C.y=(x+2)2 D.y=4(x﹣2)29.“圆材埋壁”是我国古代《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代的数学语言表示是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD的长”.依题意,CD长为( )A.寸 B.13寸 C.25寸 D.26寸10.已知二次函数y=ax2+bx+c(a、b、c都是常数,且a≠0)的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个二、填空题11.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是 12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为 个.13.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m= .14.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的面积为 .15.四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD= .16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 .三、解答题17.解方程:3(x﹣4)2=﹣2(x﹣4) 18.一个不透明的袋中中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用”画树状图“或”列表“的方法写出过程) 19.关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由. 20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)以原点O为对称中心,画出△A1B1C1,关于原点O对称的△A2B2C2,并写出B2的坐标.21.已知:如图,⊙O的直径AB与弦CD(不是直径)交于点F,若FB=2,CF=FD=4,求AC的长. 22.我市2019年为做好“精准扶贫”,投入资金1500万元用于某镇的异地安置,并规划投入资金逐年增加,2021年在2019年的基础上增加投入资金1875万元.(1)从2019年到2021年,该镇投入异地安置资金的年平均增长率为多少?(2)在2021年的具体实施中,该镇计划投入资金不低于500万元用于优先搬迁户的奖励,规定前100户(含第100户)每户奖励2万元,100户以后每户奖励5000元,试求今年该镇最多有多少户享受到优先搬迁奖励? 23.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为 ;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m1,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小. 24.(如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若,AB=3,求BD的长. 25.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有两个不动点.
参考答案1.答案为:D.2.答案为:C.3.答案为:B.4.答案为:C.5.答案为:D.6.答案为:C.7.答案为:B.8.答案为:C.9.答案为:D.10.答案为:D.11.答案为:7.12.答案为:24;13.答案为:﹣1.14.答案为:(﹣1)a2.15.答案为:130°或50°.16.答案为:1+.17.解:3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.18.解:列表得: 2352﹣﹣﹣3252323﹣﹣﹣5352535﹣﹣﹣所有等可能的情况有6种,其中组成两位数是5的倍数的情况有2种,则所组成的两位数是5的倍数的概率为=.19.解:(1)∵关于x的方程mx2+(m+2)x+=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=﹣,x1x2=.∵+==﹣=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.20.解:(1)如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,1);(2)如图所示:△A2B2C2,即为所求,点B2的坐标为:(﹣5,﹣1).21.解:连接BC,∵AB是直径,CF=FD=4,∴AB⊥CD,∵∠ACB=90°∴∠A=∠BCF,∴△BCF∽△CAF,∴=,∴CF2=AF•BF,设AF=x,∴16=2x,∴x=8,∴由勾股定理可知:AC=422.解:(1)设从2019年到2021年,该镇投入异地安置资金的年平均增长率为x,根据题意得:1500(1+x)2=1500+1875,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:从2019年到2021年,该镇投入异地安置资金的年平均增长率为50%.(2)设今年该镇有y户享受到优先搬迁奖励,根据题意得:100×20000+(y﹣100)×5000≤5000000,解得:y≤700.答:今年该镇最多有700户享受到优先搬迁奖励.23.解:(1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大,∵m<m+1,∴y1<y2.24.(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,(2)设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=125.解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB==3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0有两个不等的实数根,∴△>0,即(2m+1)2﹣4(m2+2m)≥0,解得m<,即当m<时,平移后的抛物线总有两个不动点.
相关试卷
这是一份人教版数学九年级上册期末复习试卷08(含答案),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版数学九年级上册期末复习试卷07(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版数学九年级上册期末复习试卷01(含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。