高中人教版新课标A1.1变化率与导数学案
展开学校: 临清一中 学科:数学 编写人:马长琴
1.1.3导数的几何意义
课前预习学案
一. 预习目标
1.了解平均变化率与割线斜率之间的关系;
2.理解曲线的切线的概念;
3.通过函数的图像直观地理解导数的几何意义
,并会用导数的几何意义解题。
二. 预习内容
1.曲线的切线及切线的斜率
(1)如图3.1-2,当沿着曲线趋近于点时,
即时,割线趋近于确定的位置,这个确定位置的直线称为 .
(2)割线的斜率是,当点沿着曲线无限接近点时,
无限趋近于切线的斜率,即= =
2.导数的几何意义
函数在处的导数等于在该点处的切线的斜率,
即= .
三. 提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 | 疑惑内容 |
|
|
|
|
|
|
课内探究学案
一. 学习目标
1.了解平均变化率与割线斜率之间的关系;
2.理解曲线的切线的概念;
3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题
二. 学习过程
(一)。复习回顾
1.平均变化率、割线的斜率
2。瞬时速度、导数
(二)。提出问题,展示目标
我们知道,导数表示函数在处的瞬时变化率,反映了函数在附近的变化情况,导数的几何意义是什么呢?
(三)、合作探究
1.曲线的切线及切线的斜率
(1)如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
(2)如何定义曲线在点处的切线?
(3)割线的斜率与切线的斜率有什么关系?
(4)切线的斜率为多少?
说明: (1)当时,割线的斜率,称为曲线在点处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:
1)与该点的位置有关;
2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;
如不存在,则在此点处无切线;
3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.
2.导数的几何意义
(1)函数在处的导数的几何意义是什么?
(2)将上述意义用数学式表达出来。
(3)根据导数的几何意义如何求曲线在某点处的切线方程?
3.导函数
(1)由函数在处求导数的过程可以看到,当时,是一个确定的数,那么,当变化时, 便是的一个函数,我们叫它为的导函数.
注: 在不致发生混淆时,导函数也简称导数.
(2)函数在点处的导数、导函数、导数之间的区别与联系是什么?
区别:
联系:
(四)。例题精析
例1 求曲线在点处的切线方程.
解:
变式训练1
求函数在点处的切线方程.
例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数,
根据图像,请描述、比较曲线在、、附近的变化情况.
解: 我们用曲线在、、处的切线,
刻画曲线在上述三个时刻附近的变化情况.
(1) 当时,曲线在处的切线的斜率 ,
所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率 ,
所以,在附近曲线下降,
即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率 ,
所以,在附近曲线下降,
即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,
这说明曲线在附近比在附近下降的缓慢.
例3 如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)
变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解:
三。反思总结
1.曲线的切线定义.
2.导数的几何意义
3.求曲线在一点处的切线的一般步骤:
四。当堂检测
1.求曲线在点处的切线.
2.求曲线在点处的切线.
1.
学校: 临清一中 学科:数学 编写人:马长琴 审稿人:张林
1.1.3 导数的几何意义
教学目标:
1.了解平均变化率与割线斜率之间的关系;
2.理解曲线的切线的概念;
3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题
二.教学重点难点:
重点:曲线的切线的概念、切线的斜率、导数的几何意义.
难点:导数的几何意义
三.教学过程:
(一)。【复习回顾】
1.平均变化率、割线的斜率
2。瞬时速度、导数
(二)。【提出问题,展示目标】
我们知道,导数表示函数在处的瞬时变化率,反映了函数在附近的变化情况,导数的几何意义是什么呢?
(三)、【合作探究】
1.曲线的切线及切线的斜率
如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
我们发现,当点沿着曲线无限接近点即时,割线趋近于确定的位置,
这个确定位置的直线称为曲线在点处的切线.
问题: (1)割线的斜率与切线的斜率有什么关系?
(2)切线的斜率为多少?
容易知道,割线的斜率是,当点沿着曲线无限接近点时,
无限趋近于切线的斜率,即
说明: (1)当时,割线的斜率,称为曲线在点处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:
1)与该点的位置有关;
2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;
如不存在,则在此点处无切线;
3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.
2.导数的几何意义
函数在处的导数等于在该点处的切线的斜率,
即
说明: 求曲线在某点处的切线方程的基本步骤:
①求出点的坐标;
②求出函数在点处的变化率得到曲线在点
的切线的斜率;
③利用点斜式求切线方程.
3.导函数
由函数在处求导数的过程可以看到,当时,是一个
确定的数,那么,当变化时,便是的一个函数,我们叫它为的导函数.
记作:或,即.
注: 在不致发生混淆时,导函数也简称导数.
4.函数在点处的导数、导函数、导数之间的区别与联系
(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的
极限,它是一个常数,不是变数.
(2)函数的导数,是指某一区间内任意点而言的,就是函数的导函数.
(3)函数在点处的导数就是导函数在处的函数值,这也是
求函数在点处的导数的方法之一.
四。【例题精析】
例1 求曲线在点处的切线方程.
解:
所以,所求切线的斜率为
因此,所求的切线方程为即
变式训练1求函数在点处的切线方程.
因为
所以,所求切线的斜率为,
因此,所求的切线方程为即
例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数,
根据图像,请描述、比较曲线在、、附近的变化情况.
解: 我们用曲线在、、处的切线,
刻画曲线在上述三个时刻附近的变化情况.
(1) 当时,曲线在处的切线平行于轴,
所以,在附近曲线比较平坦,几乎没有升降.
(2)当时,曲线在处的切线的斜率,
所以,在附近曲线下降,
即函数在附近单调递减.
(3)当时,曲线在处的切线的斜率,
所以,在附近曲线下降,
即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,
这说明曲线在附近比在附近下降的缓慢.
例3 如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)
变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解: 血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,
从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,
可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,
则它的斜率为,所以
下表给出了药物浓度瞬时变化率的估计值:
0.2 | 0.4 | 0.6 | 0.8 | |
药物浓度瞬时变化率 | 0.4 | 0 | -0.7 | -1.4 |
五。课堂小结
1.曲线的切线定义.
当点沿着曲线无限接近点即时,割线趋近于确定的位置,
这个确定位置的直线称为曲线在点处的切线
2.导数的几何意义.
函数在处的导数等于在该点处的切线的斜率,
即
3.求曲线在一点处的切线的一般步骤
①求出点的坐标;
②求出函数在点处的变化率得到曲线在点
的切线的斜率;
③利用点斜式求切线方程
六。课堂练习
1.求曲线在点处的切线.
2.求曲线在点处的切线.
七。【书面作业】
八。【板书设计】
九。【教后记】
高中数学人教版新课标A选修2-21.1变化率与导数学案及答案: 这是一份高中数学人教版新课标A选修2-21.1变化率与导数学案及答案,共5页。学案主要包含了教材分析,教学目标[来源,教学重点难点,教学方法,课时安排,教学过程等内容,欢迎下载使用。
高中数学人教版新课标A选修2-21.1变化率与导数导学案及答案: 这是一份高中数学人教版新课标A选修2-21.1变化率与导数导学案及答案,共7页。
高中数学人教版新课标A选修2-22.1合情推理与演绎推理学案及答案: 这是一份高中数学人教版新课标A选修2-22.1合情推理与演绎推理学案及答案,共6页。学案主要包含了 合情推理,提出疑惑,学习过程,教学方法,课时安排,教学过程,板书设计,教学反思等内容,欢迎下载使用。