|教案下载
搜索
    上传资料 赚现金
    《基本不等式》教案5(人教A版必修5)
    立即下载
    加入资料篮
    《基本不等式》教案5(人教A版必修5)01
    《基本不等式》教案5(人教A版必修5)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A必修53.4 基本不等式教案

    展开
    这是一份人教版新课标A必修53.4 基本不等式教案,共5页。教案主要包含了教学目标,教学重点,教学难点,板书设计,教学过程,教后小结等内容,欢迎下载使用。

    课题: §3.4基本不等式

    授课类型:新授课

    教学目标

    1.知识与技能:进一步掌握基本不等式;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题

    2.过程与方法:通过两个例题的研究,进一步掌握基本不等式,并会用此定理求某些函数的最大、最小值

    3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德

    教学重点

    基本不等式的应用

    教学难点

    利用基本不等式求最大值、最小值。

    板书设计

    课题: §3.4基本不等式(第2课时)

    1.课题导入(知识点回扣与补偿)

    1.重要不等式:

    2.基本不等式

    的算术平均数,

    的几何平均数

     

    2.讲授新课

    典型问题探究1

        方法1

        方法2

    归纳:

     

     

      典型问题探究2

          分析

          解答

          归纳

    3.随堂练习

     

     

    4.课时小结

     

     

    5.能力提高

     

     

    教学过程

    1.课题导入(知识点回扣与补偿)

    1.重要不等式:

    如果

    2.基本不等式:如果a,b是正数,那么

    的算术平均数,称的几何平均数

    成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数。

     

    2.讲授新课

    11)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

     

    2段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

     

    解:(1)设矩形菜园的长为x m,宽为y m,则xy=100,篱笆的长为2(x+y) m。由

    可得 。等号当且仅当x=y时成立,此时x=y=10.

    因此,这个矩形的长、宽都为10m时,所用的篱笆最短,最短的篱笆是40m.

    (2)解法一:设矩形菜园的宽为x m,则长为(36-2x)m,其中0<x,其面积Sx36-2x)=·2x36-2x

    当且仅当2x362x,即x9时菜园面积最大,即菜园长9m,宽为9 m时菜园面积最大为81 m2

     

    解法二:设矩形菜园的长为x m.,宽为y m ,2(x+y)=36,  x+y=18,矩形菜园的面积为xy  m。由,可得   

    当且仅当x=y,x=y=9时,等号成立。

    因此,这个矩形的长、宽都为9m时,菜园的面积最大,最大面积是81m

    归纳:(知识点的归纳应尽量引导学生大胆主动地去思考、并学会组织语言,用自己的话阐述规律性的东西)

    1.两个正数的和为定值时,它们的积有最大值,即若abR,且abMM为定值,则ab,等号当且仅当ab时成立.

    2.两个正数的积为定值时,它们的和有最小值,即若abR,且abPP为定值,则ab2,等号当且仅当ab时成立.

     

    2 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

    分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

    注意:引导、点拨、鼓动学生去尝试分析问题。

    解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得

    因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元

     

    评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。(评析部分的内容可以让学生来完成)

    归纳:用均值不等式解决此类问题时,应按如下步骤进行:(知识点的归纳应尽量引导学生大胆主动地去思考、并学会组织语言,用自己的话阐述规律性的东西)

    (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;

    (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;

    (3)在定义域内,求出函数的最大值或最小值;

    (4)正确写出答案.

    3.随堂练习

    1.已知x0,当x取什么值时,x2的值最小?最小值是多少?

    2.课本第113页的练习1、2、3、4

     

    4.课时小结

    本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:

    (1)函数的解析式中,各项均为正数;

    (2)函数的解析式中,含变数的各项的和或积必须有一个为定值;

    (3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。

    5.能力提高

    课本第113页习题[A]组的第2、4题

     

    教后小结

     

     

     

    相关教案

    高中数学人教版新课标A必修53.4 基本不等式教案及反思: 这是一份高中数学人教版新课标A必修53.4 基本不等式教案及反思,共7页。教案主要包含了课外阅读,课外拓展,情感态度与价值观等内容,欢迎下载使用。

    高中数学3.4 基本不等式教案: 这是一份高中数学3.4 基本不等式教案,共3页。教案主要包含了三维目标,教学重点与难点,学法与教学用具,授课类型,课时安排,教学思路等内容,欢迎下载使用。

    高中数学3.4 基本不等式教案: 这是一份高中数学3.4 基本不等式教案,共3页。教案主要包含了三维目标,教学重点与难点,学法与教学用具,授课类型,课时安排,教学思路等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map