|教案下载
搜索
    上传资料 赚现金
    (新人教A)高三数学教案《不等式》复习
    立即下载
    加入资料篮
    (新人教A)高三数学教案《不等式》复习01
    (新人教A)高三数学教案《不等式》复习02
    (新人教A)高三数学教案《不等式》复习03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修5第三章 不等式综合与测试教案

    展开
    这是一份高中数学人教版新课标A必修5第三章 不等式综合与测试教案,共8页。教案主要包含了本讲主要内容,学习指导,典型例题,同步练习,参考答案等内容,欢迎下载使用。

    高 三 数 学第14讲

    主讲教师:孙福明

    主审教师:高三数学组

     

    一、              本讲进度

    《不等式》复习

    二、本讲主要内容

    1、不等式的概念及性质;

        2、不等式的证明;

        3、不等式的解法;

        4、不等式的应用。

    三、学习指导

    1、不等式的性质是证明不等式和解不等式的基础。不等式的基本性质有:

    (1)对称性或反身性:a>bb<a

    (2)传递性:若a>bb>c,则a>c

    (3)可加性:a>ba+c>b+c,此法则又称为移项法则;

    (4)可乘性:a>b,当c>0时,ac>bc;当c<0时,ac<bc

    不等式运算性质:

    (1)同向相加:若a>bc>d则a+c>b+d

    (2)正数同向相乘:若a>b>0c>d>0,则ac>bd

     特例:(3)乘方法则:若a>b>0nN+,则

    (4)开方法则:若a>b>0nN+,则

    (5)倒数法则:若ab>0a>b,则

    掌握不等式的性质,应注意:

    (1)条件与结论间的对应关系,如是符号还是符号;

    (2)不等式性质的重点是不等号方向,条件与不等号方向是紧密相连的。

        2、均值不等式;利用完全平方式的性质,可得a2+b22ab(abR),该不等式可推广为a2+b22|ab|;或变形为|ab|

    ab0时,a+bab.

    在具体条件下选择适当的形式。

    3、不等式的证明:

    (1)不等式证明的常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;

    (2)在不等式证明过程中,应注重与不等式的运算性质联合使用;

    (3)证明不等式的过程中,放大或缩小应适度。

    4、  不等式的解法:

    解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。

    一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。利用序轴标根法可以解分式及高次不等式。

    含参数的不等式应适当分类讨论。

    5、不等式的应用相当广泛,如求函数的定义域,值域,研究函数单调性等。在解决问题过程中,应当善于发现具体问题背景下的不等式模型。

    用基本不等式求分式函数及多元函数最值是求函数最值的初等数学方法之一。

    研究不等式结合函数思想,数形结合思想,等价变换思想等。

    四、典型例题

    例1、  已知f(x)=ax2-c-4f(1)-1,-1f(2)5,试求f(3)的取值范围。

    解题思路分析:

    从条件和结论相互化归的角度看,用f(1)f(2)的线性组合来表示f(3),再利用不等式的性质求解。

    f(3)=mf(1)+nf(2)

    9a-c=m(a-c)+n(4a-c)

    9a-c=(m+4n)a-(m+n)c

    f(3)=

    -4f(1)-1,-1f(2)5

    ,

    -1f(3)20

    说明:

    1、本题也可以先用f(1)f(2)表示ac,即a=[f(2)-f(1)]c=[f(2)-4f(1)],然后代入f(3),达到用f(1)f(2)表示f(3)的目的。

        2、本题典型错误是从-4a-c-1,-14a-c5中解出ac的范围,然后再用不等式的运算性质求f(3)=9a-c的范围。错误的原因是多次运用不等式的运算性质时,不等式之间出现了不等价变形。

    2、本题还可用线性规划知识求解。

    例2、  a>0b>0,求证:

    解题思路分析:

    法一:比差法,当不等式是代数不等式时,常用比差法,比差法的三步骤即为函数单调性证明的步骤。

    左-右=

         0

    法二:基本不等式

    根据不等号的方向应自左向右进行缩小,为了出现右边的整式形式,用配方的技巧。

      

    两式相加得:

    例3、  设实数xy满足y+x2=0,0<a<1,求证:

    解题思路分析:

    0<a<1

    说明:本题在放缩过程中,利用了函数的单调性,函数知识与不等式是紧密相连的。

    例4、已知ab为正常数,xy为正实数,且,求x+y的最小值。

    解题思路分析:

    法一:直接利用基本不等式:当且仅当,即时等号成立

    说明:为了使得等号成立,本题利用了1的逆代换。

    法二:消元为一元函数

    途径一:由

    x>0y>0a>0

    >0y-b>0

    x+y

    当且仅当,即时,等号成立

    途径二:令(0,

    x+y=

    当且仅当时,等号成立

    说明:本题从代数消元或三角换元两种途径起到了消元作用。

    例5、已知f(x)=-3x2+a(6-a)x+b

    (1)解关于a的不等式f(1)>0

    (2)当不等式f(x)>0的解集为(-1,3)时,求实数ab的值。

    解题思路分析:

    (1)f(1)=-3+a(6-a)+b=-a2+6a+b-3

      f(1)>0

      a2-6a+3-b<0

    =24+4b

    b-6时,△≤0

    f(1)>0的解集为φ

    b>-6时,

    f(1)>0的解集为

       (2) 不等式-3x2+a(6-a)x+b>0的解集为(-1,3)

    f(x)>0与不等式(x+1)(x-3)<0同解

    3x2-a(6-a)x-b<0解集为(-1,3)

    解之得

    例6、设abR,关于x方程x2+ax+b=0的实根为αβ,若|a|+|b|<1,求证:

    |α|<1,|β|<1。

    解题思路分析:

    在不等式、方程、函数的综合题中,通常以函数为中心。

    法一:令f(x)=x2+ax+b

    f(1)=1+a+b>1-(|a|+|b|)>1-1=0

       f(-1)=1-a+b>1-(|a|+|b|)>0

    0<|a||a|+|b|<1

    -1<a<1

    f(x)=0的两根在(-1,1)内,即|α|<1,|β|<1

    法二:∵α+β=-aαβ=b

    |α+β|+|αβ|=|α|+|β|<1

    |α|-|β|+|α||β|<|α+β|+|αβ|<1

    (|α|-1)(|β|+1)<0

    |β|+1>0

    |α|<1

    同理:|β|<1

    说明:对绝对值不等式的处理技巧是适度放缩,如|a|-|b||a+b||b|-|a||a±b|的选择等。

    例7、某人乘坐出租车从A地到乙地,有两种方案:第一种方案,乘起步价为10元,每km1.2元的出租车;第二种方案,乘起步价为8元,每km价1.4元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等的,则此人从A地到B地选择哪一种方案比较适合?

    解题思路分析:

    设A地到B地距离为mkm,起步价内行驶的路为akm

    显然,当ma时,选起步价为8元的出租车比较合适

    m>a时,设m=a+xx>0),乘坐起步价为10元的出租车费用为P(x)元,乘坐起步价为8元的出租车费用为Q(x)元,则P(x)=10+1.2x,Q(x)=8+1.4x

    P(x)-Q(x)=2-0.2x=0.2(10-x)

    x>0时,P(x)<Q(x),此时起步价为10元的出租车比较合适

    x<10时,P(x)>Q(x),此时选起步价为8元的出租车比较合适

    x=10时,此时两种出租车任选

    五、同步练习

    (一)选择题

    1、a>0b>0

    A、充分而非必要条件               B、必要而非充要条件

    C、充要条件                       D、既非充分又非必要条件

    2、设a<0,则关于x的不等式42x2+ax-a2<0的解集为

    A、(     B、(    C、(    D、φ

    3、若0<a<ba+b=1,则四个数b2aba2+b2中最大的是

    A、              B、b             C、2ab           D、a2+b2

    4、已知x>0f(x)=,则

    A、f(x)2       B、f(x)10       Cf(x)6       Df(x)3

    5、已知a>2),则

    A、  p>q           B、p<q            C、pq          D、pq

    6、若|a-c|<h, |b-c|<h,则下列不等式一定成立的是

    A、  |a-b|<2h      B、|a-b|>2h       C、|a-b|<h       D、|a-b|>h

    7、关于x的方程9x+(a+4)·3x+4=0有解,则实数a的取值范围是

    A、  (-,-8][0,+           B、(-,-4)

    B、  [-8,4)                        D、(-,-8]

    8、a>0b>0,且2a+b=1,则S=2-4a2-b2的最大值是

    A、          B、         C、        D、

    (二)填空题

    9、a>0b>0ab是常数,则当x>0时,函数f(x)=的最小值是______

        10、周长为的直角三角形面积的最大值为__________

        11、记S=,则S与1的大小关系是__________

    12、不等式|x2-2x+3|<|3x-1|的解集为__________

    (三)解答题

    13、要使不等式对所有正数xy都成立,试问k的最小值是多少?

    14、解关于x的不等式

    15、已知a0,求证:

    16、已知不等式nN+都成立,试求实数a的取值范围。

    17、若a是正实数,2a2+3b2=10,求的最值。

    18、商店经销某商品,年销售量为D件,每件商品库存费用为I元,每批进货量为Q件,每次进货所需费用为S元,现假定商店在卖完该货物时立即进货,使库存量平均为件,问每批进货量Q为多大时,整个费用最省?

    六、参考答案

    (一)选择题

     1、A   2、A   3、B   4、C   5、A   6、A   7、D   8、A

    (二)填空题

     9、   10、   11、S<1   12、(1,4)

    (三)解答题

     13、

     14、当a-1时,x(-a)(-1,2)

         当-1<a<2时,x(-,-1)(a,2)

         a=2时,x(-,-1)

         a>2时,x(-,-1)(2a)

     15、当|a||b|时,不等式显然成立

         当|a|>|b|时,

     左=

       =

    16、

    17、,此时

    18、

     

     

    相关教案

    高中人教版新课标A2.1.2指数函数及其性质教案设计: 这是一份高中人教版新课标A2.1.2指数函数及其性质教案设计,共3页。教案主要包含了问题提出,指数函数的概念,指数函数的图象,理论迁移等内容,欢迎下载使用。

    高中数学人教版新课标A必修4第二章 平面向量综合与测试教案及反思: 这是一份高中数学人教版新课标A必修4第二章 平面向量综合与测试教案及反思

    数学必修41.2 任意的三角函数教学设计: 这是一份数学必修41.2 任意的三角函数教学设计,共5页。教案主要包含了学习目标,教学重点,教学方法,教学过程,课后作业,板书设计等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map