终身会员
搜索
    上传资料 赚现金
    高中数学人教必修4:1.5 函数y=Asin(ωx+ψ) 教案2
    立即下载
    加入资料篮
    高中数学人教必修4:1.5 函数y=Asin(ωx+ψ) 教案201
    高中数学人教必修4:1.5 函数y=Asin(ωx+ψ) 教案202
    高中数学人教必修4:1.5 函数y=Asin(ωx+ψ) 教案203
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案

    展开
    这是一份人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案,共6页。

       函数yAsin(ωx)的图象教案

    教学目标

    (一)知识目标

    1.相位变换中的有关概念;
    2.y=sin(x)的图象的画法.

    (二)能力目标

    1.理解相位变换中的有关概念;

    2.会用相位变换画出函数的图象;

    3.会用五点法画出y=sin(x)的简图.

    (三)德育目标

    1.数形结合思想的渗透;

    2.辩证观点的培养;

    3.数学修养的培养.

    教学重点

    1.相位变换中的有关概念;

    2.会用相位变换画函数图象;

    3.五点法y=sin(x)的简图.

    教学难点

    理解并利用相位变换画图象.

    教学方法

    引导学生体会作图过程从而理解相位变换.(讲练结合法)

    教学过程

    .课题导入

    师:我们随着学习三角函数的深入,还会遇到形如y=sin(x)的三角函数,这种函数的图象又该如何得到呢?今天,我们一起来探讨一下.

    .讲授新课

    师:下面看例子

    [例]画出函数

    y=sin(x),xR

    y=sin(x),xR

    的简图.

    解:列表

    x

    -

    X=x+

    0

    2

    sin(x+)

    0

    1

    0

    1

    0

    描点画图:

     

     

     

     

     

     

     

     

    x

    X=x

    0

    2

    sin(x)

    0

    1

    0

    1

    0

    通过比较,发现:

    函数y=sin(x),xR的图象可看作把正弦曲线上所有的点向左平行移动个单位长度而得到.

    函数y=sin(x),xR的图象可看作把正弦曲线上所有点向右平行移动个单位长度而得到.

    一般地,函数y=sin(x),xR(其中0)的图象,可以看作把正弦曲线上所有点向左(当>0时)或向右(当<0时=平行移动||个单位长度而得到.

    师:y=sin(x)与y=sinx的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换.

    师:下面,请同学们练习画一下.

    .课堂练习

    生:(书面练习)课本P661.(5)(6)(7)

    师:指导学生完成

    .课时小结

    师:通过本节学习要理解并掌握相位变换画图象

    .课后作业

    (一)课本P67,习题4.9    1

    (二)1.预习课本P63~P65

    2.预习提纲

    (1)如何得到yAsin(ωx),xR(其中A>0,ω>0)的简图?

    (2)作图步骤为何?

    (3)多种变换的顺序又如何?

    板书设计

    课题

    课时小结

    备课资料

    1.(1)y=sin(x)是由y=sinx平移个单位得到的.

    (2)y=sin(x)是由y=sinx平移个单位得到的.

    (3)y=sin(x)是由y=sin(x)向平移个单位得到的.

    2.若将某函数的图象向右平移以后所得到的图象的函数式是y=sin(x),则原来的函数表达式为(     )

    A.y=sin(x)             B.y=sin(x)

    C.y=sin(x)              D.y=sin(x)-

    答案:A

    3.把函数y=cos(3x)的图象适当变动就可以得到y=sin(-3x)的图象,这种变动可以是(     )

    A.向右平移                 B.向左平移

    C.向右平移                D.向左平移

    分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x的系数相同.

    解:y=cos(3x)=sin(-3x)=sin[-3(x)]

    y=sin[-3(x-)]向左平移才能得到y=sin(-3x)的图象.

    答案:D

    4.将函数yf(x)的图象沿x轴向右平移,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y=sinx的图象相同,则yf(x)是(     )

    A.y=sin(2x)             B.y=sin(2x)

    C.y=sin(2x)            D.y=sin(2x)

    分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推法.

    解:yf(x)可由y=sinx,纵坐标不变,横坐标压缩为原来的1/2,得y=sin2x;再沿x轴向左平移y=sin2(x),即f(x)=sin(2x).

    答案:C

    5.若函数f(x)=sin2xacos2x的图象关于直线x=-对称,则a1.

    分析:这是已知函数图象的对称轴方程,求函数解析式中参数值的一类逆向型题,解题的关键是如何巧用对称性.

    解:x1=0,x2=-是定义域中关于x=-对称的两点

    f(0)=f(-)

    即0+a=sin(-)+acos(-)

    a=-1

    6.若对任意实数a,函数y=5sin(πx)(k)在区间[aa+3]上的值出现不少于4次且不多于8次,则k的值是(     )

    A.2                 B.4                C.3或4                D.2或3

    分析:这也是求函数解析式中参数值的逆向型题,解题的思路是:先求出与k相关的周期T的取值范围,再求k.

    解:T

    又因每一周期内出现值时有2次,出现4次取2个周期,出现值8次应有4个周期.

    有4T3且2T3

    即得T

    解得kkk=2或3.

    答案:D

    附:巧求初相角

    求初相角是高中数学学习中的一个难点,怎样求初相角?初相角有几个?下面通过错解剖析,介绍四种方法.

    如图,它是函数yAsin(ωx)(A>0,ω>0),||<π的图象,

    由图中条件,写出该函数解析式.

    错解:

    由图知:A=5

    T=3πω

    y=5sin(x)

    将(π,0)代入该式得:5sin(π)=0

    由sin()=0,得kπ

    kπ (kZ)

    |<π=-

    y=5sin(x)或y=5sin(x)

    分析:由题意可知,点(,5)在此函数的图象上,但在y=5sin(x)中,令x,则y=5sin()=5sin(-)=-5,由此可知:y=5sin(x)不合题意.

    那么,问题出在哪里呢?我们知道,已知三角函数值求角,在一个周期内一般总有两个解,只有在限定的范围内才能得出惟一解.

    正解一:(单调性法)

    点(π,0)在递减的那段曲线上

    +2kπ+2kπ](kZ)

    由sin()=0得=2kππ

    =2kπ (kZ)

    |<π

    正解二:(最值点法)

    将最高点坐标(,5)代入y=5sin(x)得5sin()=5

    =2kπ

    =2kπ (kZ)取

    正解三:(起始点法)

    函数yAsin(ωx)的图象一般由五点法作出,而起始点的横坐标x正是由ωx+=0解得的,故只要找出起始点横坐标x0,就可以迅速求得角.由图象求得x0=-,=-ωx0=- (-)=.

    正解四:(平移法)

    由图象知,将y=5sin(x)的图象沿x轴向左平移个单位,就得到本题图象,故所求函数为y=5sin(x),即y=5sin(x).

    教学后记

    相关教案

    高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案: 这是一份高中数学人教版新课标A必修41.5 函数y=Asin(ωx+ψ)教案,共1页。教案主要包含了备用习题等内容,欢迎下载使用。

    高中数学人教版新课标A必修4第一章 三角函数1.5 函数y=Asin(ωx+ψ)教学设计: 这是一份高中数学人教版新课标A必修4第一章 三角函数1.5 函数y=Asin(ωx+ψ)教学设计,共15页。

    数学必修41.5 函数y=Asin(ωx+ψ)教案: 这是一份数学必修41.5 函数y=Asin(ωx+ψ)教案,共4页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map