
人教版新课标A必修41.2 任意的三角函数学案
展开
这是一份人教版新课标A必修41.2 任意的三角函数学案,共3页。学案主要包含了学习目标、细解考纲,知识梳理、双基再现,小试身手、轻松过关,基础训练、锋芒初显,举一反三、能力拓展,名师小结、感悟反思等内容,欢迎下载使用。
§1.2.2 同角三角函数的基本关系编者:梁军【学习目标、细解考纲】灵活运用同角三角函数的两个基本关系解决求值、化简、证明等问题。【知识梳理、双基再现】1、同一个角的正弦、余弦的平方和等于 ,商等于 。 即 ; 。【小试身手、轻松过关】2、,则的值等于 ( )A. B. C. D. 3、若,则 ; .4、化简sin2+sin2β-sin2sin2β+cos2cos2β= .5、已知,求的值. 【基础训练、锋芒初显】6、已知A是三角形的一个内角,sinA+cosA = ,则这个三角形是 ( ) A.锐角三角形 B.钝角三角形 C.不等腰直角三角形 D.等腰直角三角形7、已知sinαcosα = ,则cosα-sinα的值等于 ( ) A.± B.± C. D.-8、已知是第三象限角,且,则 ( ) A. B. C. D. 9、如果角满足,那么的值是 ( ) A. B. C. D.10、若 = -2 tan,则角的取值范围是 . 11、已知,则的值是A. B. C.2 D.-212、若是方程的两根,则的值为 A. B. C. D.13、若,则的值为________________.14、已知,则的值为 .15、已知,则m=_________; .16、若为二象限角,且,那么是 A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角【举一反三、能力拓展】17、求证:. 18、已知,且.(1)求、的值; (2)求、、的值. 19、化简:tanα(cosα-sinα)+ 【名师小结、感悟反思】1、 由已知一个三角函数值,根据基本关系式求其它三角函数值,首先要注意判定角所在的象限,进而判断所求的三角函数值的正负,以免出错。2、 化简三角式的目的是为了简化运算,化简的一般要求是:⑴能求出值的要求出值来,函数种类尽量少;⑵化简后式子项数最少,次数最低;⑶尽量化去含根式的式子,尽可能不含分母。3、证明三角恒等式实质是消除等式两端的差异,根据不同题型,可采用:⑴左边右边 ⑵右边左边 ⑶左边、右边中间。这是就证明的“方向”而言,从“繁、简”角度讲一般由繁到简。
相关学案
这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.2 三角函数的概念学案,文件包含正文docx、答案docx等2份学案配套教学资源,其中学案共10页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册5.2 三角函数的概念导学案,共19页。
这是一份数学必修41.2 任意的三角函数学案设计,共4页。学案主要包含了课前准备,新课导学,小结反思等内容,欢迎下载使用。
