高中数学人教版新课标A必修4第一章 三角函数综合与测试教学设计
展开吉林省吉林一中高一数学必修四第三章第2节《同角三角函数的基本关系2》教案 新人教A版
(一)复习:
1.同角三角函数的基本关系式。
(1)倒数关系:,,.
(2)商数关系:,.
(3)平方关系:,,.
(练习)已知,求.
(二)新课讲解:
例1.化简.
解:原式.
例2.化简.
解:原式
.
例3.已知,试确定使等式成立的角的集合。
解:∵=
==.
又∵,
∴, 即得或.
所以,角的集合为:或.
例4.化简.
解:原式=
.
说明:化简后的简单三角函数式应尽量满足以下几点:
(1)所含三角函数的种类最少;
(2)能求值(指准确值)尽量求值;
(3)不含特殊角的三角函数值。
例5.求证:.
证法一:由题义知,所以.
∴左边=右边.
∴原式成立.
证法二:由题义知,所以.
又∵,
∴.
证法三:由题义知,所以.
,
∴.
例6.求证:.
证明:左边
,
右边.
所以,原式成立。
总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。
例7.已知,求.
解:由等式两边平方:
.
∴(*),即,
可看作方程的两个根,解得.
又∵,∴.又由(*)式知
因此,.
五.小结:1.运用同角三角函数关系式化简、证明。
2.常用的变形措施有:大角化小,切割化弦等。
六.作业:习题 第5,7,8题
人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计: 这是一份人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计
高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计: 这是一份高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计
人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计及反思: 这是一份人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式教学设计及反思