高中数学人教版新课标A必修41.2 任意的三角函数教案
展开教学目的:
知识目标:1.用单位圆中的正切线作正切函数的图象;
2.用正切函数图象解决函数有关的性质;
能力目标:1.理解并掌握作正切函数图象的方法;
2.理解用函数图象解决有关性质问题的方法;
德育目标:培养认真学习的精神;
教学重点:用单位圆中的正切线作正切函数图象;
教学难点:正切函数的性质。
授课类型:新授课
教学模式: 启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
问题:正弦曲线是怎样画的?
正切线?
练习正切线,画出下列各角的正切线:
.
下面我们来作正切函数和余切函数的图象.
二、讲解新课:
1.正切函数的定义域是什么?
2.正切函数是不是周期函数?
,
∴是的一个周期。
是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作,的图象
说明:(1)正切函数的最小正周期不能比小,正切函数的最小正周期是;
(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数
,且的图象,称“正切曲线”。
(3)由图象可以看出,正切曲线是由被相互平行的直线所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得:
(1)定义域:;
(2)值域:R
观察:当从小于,时,
当从大于,时,。
(3)周期性:;
(4)奇偶性:由知,正切函数是奇函数;
(5)单调性:在开区间内,函数单调递增。
5.余切函数y=cotx的图象及其性质(要求学生了解):
——即将的图象,向左平移个单位,再以x轴为对称轴上下翻折,即得的图象
定义域:
值域:R,
当时,当时
周期:
奇偶性:奇函数
单调性:在区间上函数单调递减
6.讲解范例:
例1比较与的大小
解:,,
又:内单调递增,
例2讨论函数的性质
略解:定义域:
值域:R 奇偶性:非奇非偶函数
单调性:在上是增函数
图象:可看作是的图象向左平移单位
例3求函数y=tan2x的定义域
解:由2x≠kπ+,(k∈Z)
得x≠+,(k∈Z)
∴y=tan2x的定义域为:{x|x∈R且x≠+,k∈Z}
例4观察正切曲线写出满足下列条件的x的值的范围:tanx>0
解:画出y=tanx在(-,)上的图象,不难看出在此区间上满足tanx>0的x的范围为:0<x<
结合周期性,可知在x∈R,且x≠kπ+上满足的x的取值范围为(kπ,kπ+)(k∈Z)
例5不通过求值,比较tan135°与tan138°的大小
解:∵90°<135°<138°<270°
又∵y=tanx在x∈(90°,270°)上是增函数
∴tan135°<tan138°
三、巩固与练习
P.71.练习2,3,6
求函数y=tan2x的定义域、值域和周期、并作出它在区间[-π,π]内的图象
解:(1)要使函数y=tan2x有意义,必须且只须2x≠+kπ,k∈Z
即x≠+,k∈Z
∴函数y=tan2x的定义域为{x∈R|,x≠,k∈Z}
(2)设t=2x,由x≠,k∈Z}知t≠+kπ,k∈Z
∴y=tant的值域为(-∞,+∞)
即y=tan2x的值域为(-∞,+∞)
(3)由tan2(x+)=tan(2x+π)=tan2x
∴y=tan2x的周期为.
(4)函数y=tan2x在区间[-π,π]的图象如图
四、小 结:本节课学习了以下内容:
1.因为正切函数的定义域是,所以它的图象被等相互平行的直线所隔开,而在相邻平行线间的图象是连续的。
2.作出正切函数的图象,也是先作出长度为一个周期(-π/2,π/2)的区间内的函数的图象,然后再将它沿x轴向左或向右移动,每次移动的距离是π个单位,就可以得到整个正切函数的图象。
讨论函数的单调性应借助图象或相关的函数的单调性;形如y=tan(ωx),x≠ (k∈Z)的周期T=;注意正切函数的图象是由不连续的无数条曲线组成的
高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质教案设计: 这是一份高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质教案设计,共3页。教案主要包含了情景导入,例题分析,课堂小结,板书设计等内容,欢迎下载使用。
【小单元教案】高中数学人教A版(2019)必修第一册--5.4.4 正切函数的性质与图象(课时教学设计): 这是一份【小单元教案】高中数学人教A版(2019)必修第一册--5.4.4 正切函数的性质与图象(课时教学设计),共9页。
数学必修4第一章 三角函数1.4 三角函数的图象与性质教案: 这是一份数学必修4第一章 三角函数1.4 三角函数的图象与性质教案,共2页。教案主要包含了函数f±g最小正周期的求法等内容,欢迎下载使用。