高中数学人教版新课标A必修42.1 平面向量的实际背景及基本概念学案
展开第1课时 向量的概念与几何运算
1.向量的有关概念
⑴ 既有 又有 的量叫向量.
的向量叫零向量. 的向量,叫单位向量.
⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .
⑶ 且 的向量叫相等向量.
2.向量的加法与减法
⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.
⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .
3.实数与向量的积
⑴ 实数与向量的积是一个向量,记作.它的长度与方向规定如下:
① | |= .
② 当>0时,的方向与的方向 ;
当<0时,的方向与的方向 ;
当=0时, .
⑵ (μ)= .
(+μ)= .
(+)= .
⑶ 共线定理:向量与非零向量共线的充要条件是有且只有一个实数λ使得 .
4.⑴ 平面向量基本定理:如果、是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、,使得 .
⑵ 设、是一组基底,=,=,则与共线的充要条件是 .
例1.已知△ABC中,D为BC的中点,E为AD的中点.设,,求.
解:=-=(+)-=-+
变式训练1.如图所示,D是△ABC边AB上的中点,则向量等于( )
A.-+
B.--
C.-
D.+
解:A
例2. 已知向量,,,其中、不共线,求实数、,使.
解:=λ+μ2-9=(2λ+2μ)+(-3λ+3μ)2λ+2μ=2,且-3λ+3μ=-9λ=2,且μ=-1
变式训练2:已知平行四边形ABCD的对角线相交于O点,点P为平面上任意一点,求证:
证明 +=2,+=2+++=4
例3. 已知ABCD是一个梯形,AB、CD是梯形的两底边,且AB=2CD,M、N分别是DC和AB的中点,若,,试用、表示和.
解:连NC,则;
变式训练3:如图所示,OADB是以向量=,=为邻边的平行四边形,又=,=,试用、表示,,.
解:=+,=+,
=-
例4. 设,是两个不共线向量,若与起点相同,t∈R,t为何值时,,t,(+)三向量的终点在一条直线上?
解:设 (∈R)化简整理得:
∵,∴
故时,三向量的向量的终点在一直线上.
变式训练4:已知,设,如果
,那么为何值时,三点在一条直线上?
解:由题设知,,三点在一条
直线上的充要条件是存在实数,使得,即,
整理得.
①若共线,则可为任意实数;
②若不共线,则有,解之得,.
综上,共线时,则可为任意实数;不共线时,.
1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.
2.注意与O的区别.零向量与任一向量平行.
3.注意平行向量与平行线段的区别.用向量方法证明AB∥CD,需证∥,且AB与CD不共线.要证A、B、C三点共线,则证∥即可.
4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.
2020-2021学年2.5 平面向量应用举例学案: 这是一份2020-2021学年2.5 平面向量应用举例学案,共8页。学案主要包含了知识回顾,基本训练,例题分析等内容,欢迎下载使用。
人教版新课标A必修42.4 平面向量的数量积学案: 这是一份人教版新课标A必修42.4 平面向量的数量积学案,共3页。
2021学年1.5 函数y=Asin(ωx+ψ)学案: 这是一份2021学年1.5 函数y=Asin(ωx+ψ)学案,共9页。学案主要包含了学习目标、细解考纲,知识梳理、又基再现,小试身手、轻松过关,基础训练、锋芒初显,举一反三 能力拓展,名师小结 感悟反思,知识梳理 双基再现,小试身手 轻松过关等内容,欢迎下载使用。