《随机事件的概率及概率的意义》学案1
展开3.1 随机事件的概率
3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)学案
一、教学目标:
1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.
2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.
三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.
四、教学设想:
1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
2、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2):在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
问题1:频率与概率的区别与联系是什么?
问题2:必然事件、不可能事件、随机事件的特点分别是什么呢?
(7)似然法与极大似然法:见课本P111
3、例题分析:
一:随机事件
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”;
(3)“某人射击一次,中靶”;
(4)“如果a>b,那么a-b>0”;
(5)“掷一枚硬币,出现正面”;
(6)“导体通电后,发热”;
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水份,种子能发芽”;
(10)“在常温下,焊锡熔化”.
答:
变式练习:
1:在10件同类产品中,有八件是正品,2件是次品,从中任意抽出3件的必然事件是( )
A:3件都是正品 B:至少有1件上次品
C:3件都是次品 D:至少有1件上正品
二:随机实验:
例2:下列随机事件中,一次实验各指什么?它们各有几次实验?
(1)一天中,从兖州开往北京的7列列车,全都正点到达;
(2)抛10次质地均匀的硬币,硬币落地时有5次正面向上;
变式练习:
指出下列事件的条件和结果:
(1)某人射击8次,恰有2次中靶;
(2)某人购买福利彩票10注,其中有2次中3等奖,其余8注未中奖;
三:随机事件的概率:
例3: 某射手在同一条件下进行射击,结果如下表所示:
射击次数n | 10 | 20 | 50 | 100 | 200 | 500 |
击中靶心次数m | 8 | 19 | 44 | 92 | 178 | 455 |
击中靶心的频率 |
|
|
|
|
|
|
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。
解:
变式练习:盒中装有4只白球5只黑球,从中任取一球
(1)“取出的是黑球”是什么事件?它的概率是多少?
(2)“取出的是白球”是什么事件?它的概率是多少?
(3)“取出的是白球或是黑球”是什么事件?它的概率是多少?
小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。
答案:(
例4 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
分析:
变式练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:
时间范围 | 1年内 | 2年内 | 3年内 | 4年内 |
新生婴儿数 | 5544 | 9607 | 13520 | 17190 |
男婴数 | 2883 | 4970 | 6994 | 8892 |
男婴出生的频率 |
|
|
|
|
(1)填写表中男婴出生的频率(结果保留到小数点后第3位);
(2)这一地区男婴出生的概率约是多少?
四:概率的定义:
例4 如果某种彩票中奖的概率为,那么买1000张彩票一定能中奖吗?请用概率的意义解释。
分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
解:
变式练习:解释下列概率的含义:
()某厂生产产品合格的概率为0.9
()一次抽奖活动中,抽奖的概率为0.2
例5 在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性。
分析:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5。
解:这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5。
小结:事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的。
4、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
5、自我评价与课堂练习:
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定
2.下列说法正确的是( )
A.任一事件的概率总在(0.1)内
B.不可能事件的概率不一定为0
C.必然事件的概率一定为1 D.以上均不对
3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
每批粒数 | 2 | 5 | 10 | 70 | 130 | 700 | 1500 | 2000 | 3000 |
发芽的粒数 | 2 | 4 | 9 | 60 | 116 | 282 | 639 | 1339 | 2715 |
发芽的频率 |
|
|
|
|
|
|
|
|
|
(1)完成上面表格:
(2)该油菜子发芽的概率约是多少?
4.某篮球运动员,在同一条件下进行投篮练习,结果如下表如示。
投篮次数 |
|
|
|
|
|
|
|
进球次数m |
|
|
|
|
|
|
|
进球频率 |
|
|
|
|
|
|
|
(1)计算表中进球的频率;
(2)这位运动员投篮一次,进球的概率约为多少?
5.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?
6、评价标准:
1.B[提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件。]
2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.]
3.解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897。
4.解:(1)填入表中的数据依次为0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)由于上述频率接近0.80,因此,进球的概率约为0.80。
5.解:天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。
7、作业:根据情况安排