山东省高中数学(新课标人教A版)必修三《3.3.2均匀随机数的产生》训练评估
展开
这是一份山东省高中数学(新课标人教A版)必修三《3.3.2均匀随机数的产生》训练评估,共4页。
3.3.2 均匀随机数的产生(选学)双基达标 限时20分钟1.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为 ( ).A.a=a1*7 B.a=a1*7+3 C. a =a1*7-3 D.a=a1*4解析 根据伸缩、平移变换a=a1]答案 C2.在线段AB上任取三个点x1,x2,x3,则x2位于x1与x3之间的概率是 ( ).A. B. C. D.1解析 因为x1,x2,x3是线段AB上任意的三个点,任何一个数在中间的概率相等且都是.答案 B3.与均匀随机数特点不符的是 ( ).A.它是[0,1]内的任何一个实数B.它是一个随机数C.出现的每一个实数都是等可能的D.是随机数的平均数解析 A、B、C是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.答案 D4.在圆心角为90°的扇形中,以圆心O为起点作射线OC,使得∠AOC和∠BOC都不小于30°的概率为________.解析 作∠AOE=∠BOD=30°,如图所示,随机试验中,射线OC可能落在扇面AOB内任意一条射线上,而要使∠AOC和∠BOC都不小于30°,则OC落在扇面DOE内,∴P(A)=.答案 5.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.解析 由|x|≤1,得-1≤x≤1.由几何概型的概率求法知,所求的概率P==.答案 6.利用随机模拟法近似计算图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.解 设事件A:“随机向正方形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩变换x=x1]N1,N),即为概率P(A)的近似值.设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=,所以≈.所以S≈即为阴影部分面积的近似值.综合提高 限时25分钟7.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为 ( ).A. B. C. D.无法计算解析 ∵=,∴S阴影=S正方形=.答案 B8.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是 ( ).A.一样大 B.蓝白区域大C.红黄区域大 D.由指针转动圈数决定解析 指针停留在哪个区域的可能性大,即表明该区域的张角大,显然,蓝白区域大.答案 B9.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.解析 以A、B、C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求.∴P==.答案 10.一个靶子如图所示,随机地掷一个飞镖扎在靶子上,假设飞镖既不会落在靶心,也不会落在阴影部分与空白的交线上,现随机向靶掷飞镖30次,则飞镖落在阴影部分的次数约为________.答案 511.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率:(1)小燕比小明先到校;(2)小燕比小明先到校,小明比小军先到校.解 记事件A“小燕比小明先到校”;记事件B“小燕比小明先到校且小明比小军先到校”.① 利用计算器或计算机产生三组0到1区间的均匀随机数,a=RAND,b=RAND,c=RAND分别表示小军、小燕和小明三人早上到校的时间;②统计出试验总次数N及其中满足b<c的次数N1,满足b<c<a的次数N2;③计算频率fn(A)=,fn(B)=,即分别为事件A,B的概率的近似值.12.(创新拓展)如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法)解 法一 我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据≈,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈=0.7.法二 对于上述问题,我们可以用计算机模拟上述过程,步骤如下:第一步,产生两组0~1内的均匀随机数,它们表示随机点(x,y)的坐标.如果一个点的坐标满足y≥x2,就表示这个点落在区域A内.第二步,统计出落在区域A内的随机点的个数M与落在正方形内的随机点的个数N,可求得区域A的面积S≈.