人教版新课标A必修23.2 直线的方程教案设计
展开3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型
一、教学目标
(1) 使学生通过投资回报实例,对直线上升和指数爆炸有感性认识。
(2) 通过阅读理解题目中文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及起数学含义。
(3) 体验由具体到抽象及数形结合的思维方法。
二、教学重点与难点
重点:将实际问题转化为函数模型,比教常数函数、一次函数、指数函数模型的增长差异;结合实例让学生体会直线上升,指数爆炸等不同函数型增长的函义。
难点:怎样选择数学模型分析解决实际问题。
三、教学手段:
运用计算机、实物投影仪等多媒体技术。
四、教材分析:
1、 背景
(1) 圆的周长随着圆的半径的增大而增大:
L=2πR (一次函数)
(2)圆的面积随着圆的半径的增大而增大:
S=πR2 (二次函数)
(3)某种细胞分裂时,由1个分裂成两 个,两个分裂成4个……,一个这样的细
胞分裂x次后,得到的细胞个数y与x的函数关系是 y = 2x (指数 型函数) 。
2、例题
例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多 回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。
请问,你会选择哪种投资方案呢?
投资方案选择原则:
投入资金相同,回报量多者为优
(1) 比较三种方案每天回报量
(2) 比较三种方案一段时间内的总回报量
哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案。
x/天 | 方案一 | 方案二 | 方案三 | |||
y/元 | 增长量/元 | y/元 | 增长量/元 | y/元 | 增长量/元 | |
1 | 40 | 0 | 10 |
| 0.4 |
|
2 | 40 | 0 | 20 | 10 | 0.8 | 0.4 |
3 | 40 | 0 | 30 | 10 | 1.6 | 0.8 |
4 | 40 | 0 | 40 | 10 | 3.2 | 1.6 |
5 | 40 | 0 | 50 | 10 | 6.4 | 3.2 |
6 | 40 | 0 | 60 | 10 | 12.8 | 6.4 |
7 | 40 | 0 | 70 | 10 | 25.6 | 12.8 |
8 | 40 | 0 | 80 | 10 | 51.2 | 25.6 |
9 | 40 | 0 | 90 | 10 | 102.4 | 51.2 |
… | … | … | … | … | … | … |
30 | 40 | 0 | 300 | 10 | 214748364.8 | 107374182.4 |
根据上表我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据。
解:设第x天所得回报为y元,则
方案一:每天回报40元;
y=40 (x∈N*)
方案二:第一天回报10元,以后每天比前一天多回 报10元; y=10x (x∈N*)
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。
Y=0.4×2x-1(x)
从每天的回报量来看:
第1~4天,方案一最多:
每5~8天,方案二最多:
第9天以后,方案三最多;
有人认为投资
1~4天选择方案一;
5~8天选择方案二;
9天以后选择方案三。
累积回报表
天数 方案 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
一 | 40 | 80 | 120 | 160 | 200 | 240 | 280 | 320 | 360 | 400 | 440 |
二 | 10 | 30 | 60 | 100 | 150 | 210 | 280 | 360 | 450 | 550 | 660 |
三 | 0.4 | 1.2 | 2.8 | 6 | 12.4 | 25.2 | 50.8 | 102 | 204.4 | 409.2 | 816.8 |
结论
投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。
3.例题的启示:
解决实际问题的步骤:
(1)实际问题
(2)读懂问题抽象概括
(3)数学问题
(4)演算推理
(5)数学问题的解
(6)还原说明
(7)实际问题的解
4.练习
某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且资金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,但资金数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求呢?
5.小结
(1)解决实际问题的步骤:
实际问题 读懂问题 将问题抽象化 数学模型 解决问题
(2)几种常见函数的增长情况:
常数函数 | 一次函数 | 指数函数 |
没有增长 | 直线上升 | 指数爆炸 |
6.作业:
课本116页练习题集1、2题
高中数学人教版新课标A必修13.2.1几类不同增长的函数模型教案设计: 这是一份高中数学人教版新课标A必修13.2.1几类不同增长的函数模型教案设计,共5页。
数学3.2.1几类不同增长的函数模型教案: 这是一份数学3.2.1几类不同增长的函数模型教案,共13页。教案主要包含了重点与难点,选择题,解答题等内容,欢迎下载使用。
数学3.2.1几类不同增长的函数模型教学设计及反思: 这是一份数学3.2.1几类不同增长的函数模型教学设计及反思,共8页。教案主要包含了创设情境,引入课题,组织引导,合作探究,课堂练习,小结与反思,作业等内容,欢迎下载使用。