专题10 二次函数【考点精讲】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)
展开考点1:二次函数的图象和性质1.二次函数的二次函数的一般形式:y=ax2+bx+c (a,b,c是常数,a≠0) 注:未知数的最高次数是2,a≠0,b,c是任意实数。2.函数图象和性质
平移规律:由函数y=ax2平移得到y=a(x-h)2+k满足“h值正右移,负左移;k值正上移,负下移”,概括成八个字,即:“左加右减,上加下减”.
一元二次方程和二次函数的区别与联系(1)求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点和一元二次方程ax2+bx+c=0的根之间的关系: Δ=b2-4ac决定抛物线与x轴的交点个数. ① Δ=b2-4ac>0时,抛物线与x轴有2个交点;② Δ=b2-4ac=0时,抛物线与x轴有1个交点;③ Δ=b2-4ac<0时,抛物线与x轴没有交点. (3)二次函数的交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
考点4:求二次函数的解析式1.二次函数的解析式的确定要确定二次函数的解析式,就是要确定解析式中的待定系数(常数):(1)当已知抛物线上任意三点时,通常将函数的解析式设为一般式:y=ax2+bx+c(a≠0);(2)当已知抛物线的顶点坐标和抛物线上另一点时,通常将函数的解析式设为顶点式:y=a(x-h)2+k(a≠0).(3)已知抛物线与x轴的两个交点的横坐标,一般选用交点式y=a(x-x1)(x-x2)].
根据已知条件确定二次函数的解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式(y=ax2+bx+c).(2)已知抛物线顶点坐标或对称轴或最大(小)值,一般选用顶点式[y=a(x-h)2+k].(3)已知抛物线与x轴的两个交点的横坐标,一般选用交点式[y=a(x-x1)(x-x2)].(4)已知抛物线上纵坐标相同的两点,常选用顶点式.
【方法解说】(1)若二次公数的图家经过三个已知点可没函数解析式为一般式,即y=ax2+bx+c;(2)若知抛物线的顶点坐标,可出数解析式为顶点式,即y=a(x-h)2+k(a≠0),再根据抛物线与y轴的交点求出a的值;(3)若抛物线与x轴的两个交点的坐标为(x1,0)和(x2,0),可没函数解析式为交点式,即y=a(x-x1)(x-x2),再根据抛物线与y轴的交点坐标求出a的值
考点5:二次函数的最值
考点6:二次函数的应用
专题22 函数与公共点问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用): 这是一份专题22 函数与公共点问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用),文件包含专题22函数与公共点问题考点精讲-中考高分导航备战中考数学考点总复习全国通用解析版docx、专题22函数与公共点问题考点精讲-中考高分导航备战中考数学考点总复习全国通用原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专题20 三角形存在性问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用): 这是一份专题20 三角形存在性问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用),文件包含专题20三角形存在性问题考点精讲解析版docx、专题20三角形存在性问题考点精讲原卷版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
专题19 函数与角度有关问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用): 这是一份专题19 函数与角度有关问题【考点精讲】-【中考高分导航】备战 中考数学考点总复习(全国通用),文件包含专题19函数与角度有关问题考点精讲解析版docx、专题19函数与角度有关问题考点精讲原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。