湖北省仙桃市2020-2021学年九年级上学期期末数学试卷 (word版 含答案)
展开2020-2021学年湖北省仙桃市九年级第一学期期末数学试卷
一、选择题(本大题共10个小题,每小题3分,满分30分)
1.下列方程中是关于x的一元二次方程的是( )
A.x2+y﹣2=0 B.x+y=3 C.x2+2x=1 D.
2.一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为( )
A. B. C. D.
3.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是( )
A.(2,3) B.(﹣2,3) C.(﹣2,﹣3) D.(﹣3,2)
4.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
5.下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
6.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为( )
A.5000(1+2x)=7500
B.5000×2(1+x)=7500
C.5000(1+x)2=7500
D.5000+5000(1+x)+5000(1+x)2=7500
7.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于( )
A.40° B.50° C.60° D.70°
8.反比例函数经过点(2,1),则下列说法错误的是( )
A.点(﹣1,﹣2)在函数图象上
B.函数图象分布在第一、三象限
C.y随x的增大而减小
D.当y≥4时,0<x≤
9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为( )
A.8cm B.10cm C.16cm D.20cm
10.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2020的坐标为( )
A.(4039,﹣1) B.(4039,1) C.(2020,﹣1) D.(2020,1)
二、填空题(本大题共6个小题,每小题3分,满分18分)
11.定义运算:m☆n=mn2﹣mn﹣2.例如:4☆2=4×22﹣4×2﹣2=6.若1☆x=0,则x= .
12.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .
13.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.
14.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是 .
15.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是 .
16.如图,在Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m= .
三、解答题(本大题共9个小题,满分72分)
17.解方程:3x(2x+1)=2x+1.
18.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中以BC为边作一个45°的圆周角.
19.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.
(1)甲组抽到A小区的概率是 ;
(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.
20.如图,将△ABC绕点B顺时针旋转60°得到△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.
(1)求证:BC∥AD;
(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.
21.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.
(1)求k的取值范围;
(2)若x13x2+x1x23=24,求k的值.
22.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,BC∥x轴.
(1)求k的值;
(2)以AB、BC为边作菱形ABCD,求D点坐标.
23.如图,在Rt△ABC中,∠C=90°,点O在AC边上,以OA为半径的半圆O交AB于点D,交AC于点E,在BC边上取一点F,连接FD,使得DF=BF.
(1)求证:DF为半圆O的切线;
(2)若AC=8,BC=6,CF=2,求半圆O的半径长.
24.物价问题涉及民生,关系全局,为保证市场秩序稳定,某超市积极配合市场运作,诚信经营.据了解,该超市每天调运一批成本价为8元/千克的大蒜,以不超过12元/千克的单价销售,且每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系如图所示.
(1)求出每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系式;
(2)该超市将大蒜销售单价定为多少元时,每天销售大蒜的利润可达到318元;
(3)求该超市大蒜销售单价定为多少元时,每天销售大蒜的利润最大,并求出最大利润.
25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.
(1)若该二次函数图象的对称轴为直线x=4时:
①求二次函数的表达式;
②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;
(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.
参考答案
一、选择题(本大题共10个小题,每小题3分,满分30分)
1.下列方程中是关于x的一元二次方程的是( )
A.x2+y﹣2=0 B.x+y=3 C.x2+2x=1 D.
【分析】根据一元二次方程的定义判断即可,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
解:A、是二元二次方程,故本选项不合题意;
B.是二元一次方程,故本选项不合题意;
C.是一元二次方程,故本选项符合题意;
D.是分式方程,故本选项不合题意;
故选:C.
2.一个不透明的袋中有4个白球,3个黄球和2个红球,这些球除颜色外其余都相同,则从袋中随机摸出一个球是黄球的概率为( )
A. B. C. D.
【分析】先求出袋子中总的球数,再用黄球的个数除以总的球数即可.
解:∵不透明的袋中有4个白球,3个黄球和2个红球,共有9个球,
∴从袋中随机摸出一个球是黄球的概率为=;
故选:B.
3.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是( )
A.(2,3) B.(﹣2,3) C.(﹣2,﹣3) D.(﹣3,2)
【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.
解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).
故选:B.
4.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
【分析】根据“上加下减,左加右减”的原则进行解答即可.
解:由“上加下减”的原则可知,将抛物线y=x2向上平移3个单位所得抛物线的解析式为:y=x2+3;
由“左加右减”的原则可知,将抛物线y=x2+3向右平移5个单位所得抛物线的解析式为:y=(x﹣5)2+3;
故选:D.
5.下列说法正确的是( )
A.“买中奖率为的奖券10张,中奖”是必然事件
B.“汽车累积行驶10000km,从未出现故障”是不可能事件
C.气象局预报说“明天的降水概率为70%”,意味着明天一定下雨
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
【分析】根据随机事件的定义,对选项中的事件进行判断即可.
解:A.买奖券中奖是随机事件,
故A不正确;
B.汽车累积行驶10000km,从未出现故障,是随机事件,
故B不正确;
C.明天的降水概率为70%,是说明天降水的可能性是70%,是随机事件,
故C不正确;
D.经过有交通信号灯的路口,遇到红灯,是随机事件,
故D正确;
故选:D.
6.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为( )
A.5000(1+2x)=7500
B.5000×2(1+x)=7500
C.5000(1+x)2=7500
D.5000+5000(1+x)+5000(1+x)2=7500
【分析】根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.
解:设我国2017年至2019年快递业务收入的年平均增长率为x,
由题意得:5000(1+x)2=7500,
故选:C.
7.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=60°,则∠ADB等于( )
A.40° B.50° C.60° D.70°
【分析】连接OA、OB、OD,OC,求出==,求出∠AOB=∠AOD=∠DOC,根据圆周角定理求出∠BOC,再求出∠AOB,最后根据圆周角定理求出即可.
解:连接OA、OB、OD,OC,
∵∠BDC=60°,
∴∠BOC=2∠BDC=120°,
∵AB=DC,
∴∠AOB=∠DOC,
∵A为的中点,
∴=,
∴∠AOB=∠AOD,
∴∠AOB=∠AOD=∠DOC=×(360°﹣∠BOC)=80°,
∴∠ADB=AOB=40°,
故选:A.
8.反比例函数经过点(2,1),则下列说法错误的是( )
A.点(﹣1,﹣2)在函数图象上
B.函数图象分布在第一、三象限
C.y随x的增大而减小
D.当y≥4时,0<x≤
【分析】利用待定系数法求得k的值,再利用反比例函数图象的性质对每个选项进行逐一判断即可.
解:∵反比例函数经过点(2,1),
∴k=2.
∴﹣1×(﹣2)=2,故A正确;
∵k=2>0,
∴双曲线y=分布在第一、三象限,
故B选项正确;
∵当k=2>0时,反比例函数y=在每一个象限内y随x的增大而减小,
当y≥4时,0<x≤.
故C选项错误,D选项正确,
综上,说法错误的是C,
故选:C.
9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为( )
A.8cm B.10cm C.16cm D.20cm
【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.
解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:
∵AB=48cm,
∴BD=AB=×48=24(cm),
∵⊙O的直径为52cm,
∴OB=OC=26cm,
在Rt△OBD中,OD===10(cm),
∴CD=OC﹣OD=26﹣10=16(cm),
故选:C.
10.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2020的坐标为( )
A.(4039,﹣1) B.(4039,1) C.(2020,﹣1) D.(2020,1)
【分析】根据等腰直角三角形的性质可找出点P1的坐标,结合旋转的性质即可找出点P2、P3、P4、P5、…、的坐标,根据坐标的变化即可找出变化规律“P2n+1(4n+1,1),P2n+2(4n+3,﹣1)(n为自然数)”,依此规律即可得出结论.
解:∵A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,
∴P1(1,1).
∵把△AP1B绕点B顺时针旋转180°,得到△BP2C1,
∴P2(3,﹣1).
同理可得出:P3(5,1),P4(7,﹣1),P5(9,1),…,
∴P2n+1(4n+1,1),P2n+2(4n+3,﹣1)(n为自然数).
∵2020=2×1009+2,4×1009+3=4039,
∴P2020(4039,﹣1).
故选:A.
二、填空题(本大题共6个小题,每小题3分,满分18分)
11.定义运算:m☆n=mn2﹣mn﹣2.例如:4☆2=4×22﹣4×2﹣2=6.若1☆x=0,则x= 2或﹣1 .
【分析】根据题目中的新定于,可以将1☆x=0转化为一元二次方程,然后求解即可.
解:∵m☆n=mn2﹣mn﹣2,1☆x=0,
∴x2﹣x﹣2=0,
∴(x﹣2)(x+1)=0,
解得x1=2,x2=﹣1,
故答案为:2或﹣1.
12.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .
【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.
解:如图所示:连接OA,
∵正六边形内接于⊙O,
∴△OAB,△OBC都是等边三角形,
∴∠AOB=∠OBC=60°,
∴OA∥BC,
∴S△ABC=S△OBC,
∴S阴=S扇形OBC,
则飞镖落在阴影部分的概率是;
故答案为:.
13.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.
【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.
解:如图,连接OA,OB,OC,
则OB=OA=OC=1m,
因此阴影扇形的半径为1m,圆心角的度数为120°,
则扇形的弧长为:m,
而扇形的弧长相当于围成圆锥的底面周长,因此有:
2πr=,
解得,r=(m),
故答案为:.
14.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是 9 .
【分析】根据图象上点的坐标特征求得A、B的坐标,将三角形AOB的面积转化为梯形ABED的面积,根据坐标可求出梯形的面积即可,
解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,
∴A(4,3),B(2,6),
作AD⊥y轴于D,BE⊥y轴于E,
∴S△AOD=S△BOE=×12=6,
∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,
∴S△AOB=(4+2)×(6﹣3)=9,
故答案为9.
15.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是 ①②④ .
【分析】利用二次函数的性质一一判断即可.
解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,
∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;
②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,
∴该函数的图象一定经过点(0,1),故结论②正确;
③∵y=﹣(x﹣m)2+m2+1,
∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;
④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,
∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,
故答案为①②④.
16.如图,在Rt△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m= 70或120 .
【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.
解:①当点B落在AB边上时,
∵DB=DB1,
∴∠B=∠DB1B=55°,
∴m=∠BDB1=180﹣2×55=70,
②当点B落在AC上时,
在RT△DCB2中,∵∠C=90°,DB2=DB=2CD,
∴∠CB2D=30°,
∴m=∠C+∠CB2D=120,
故答案为70或120.
三、解答题(本大题共9个小题,满分72分)
17.解方程:3x(2x+1)=2x+1.
【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
解:移项得:3x(2x+1)﹣(2x+1)=0,
(2x+1)(3x﹣1)=0,
2x+1=0,3x﹣1=0,
x1=﹣,x2=.
18.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中以BC为边作一个45°的圆周角.
【分析】(1)分别延长BA、CA交半圆于E、F,利用圆周角定理和等腰三角形的性质可得到∠E=∠ABC,则可判断EF∥BC;
(2)在(1)基础上分别延长BF、CE,它们相交于M,则连接AM交半圆于D,然后证明MA⊥BC,从而根据圆周角定理可判断∠DBC=45°.
解:(1)如图1,EF为所作;
(2)如图2,∠DBC为所作.
19.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.
(1)甲组抽到A小区的概率是 ;
(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.
【分析】(1)直接根据概率公式求解即可;
(2)根据题意画出树状图得出所有等可能的情况数和甲组抽到A小区,同时乙组抽到C小区的情况数,然后根据概率公式即可得出答案.
解:(1)∵共有A,B,C,D,4个小区,
∴甲组抽到A小区的概率是,
故答案为:.
(2)根据题意画树状图如下:
∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,
∴甲组抽到A小区,同时乙组抽到C小区的概率为.
20.如图,将△ABC绕点B顺时针旋转60°得到△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.
(1)求证:BC∥AD;
(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.
【分析】(1)只要证明∠CBE=∠DAB=60°即可,
(2)由题意,BA=BD=4,BC=BE=1,∠ABD=∠CBE=60°,利用弧长公式计算即可.
【解答】(1)证明:由题意,△ABC≌△DBE,且∠ABD=∠CBE=60°,
∴AB=DB,
∴△ABD是等边三角形,
∴∠DAB=60°,
∴∠CBE=∠DAB,
∴BC∥AD.
(2)解:由题意,BA=BD=4,BC=BE=1,∠ABD=∠CBE=60°,
∴A,C两点旋转所经过的路径长之和=+=.
21.已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.
(1)求k的取值范围;
(2)若x13x2+x1x23=24,求k的值.
【分析】(1)根据△≥0建立不等式即可求解;
(2)先提取公因式对等式变形为,再结合韦达定理求解即可.
解:(1)由题意可知,Δ=(﹣4)2﹣4×1×(﹣2k+8)≥0,
整理得:16+8k﹣32≥0,
解得:k≥2,
∴k的取值范围是:k≥2.
故答案为:k≥2.
(2)由题意得:,
由韦达定理可知:x1+x2=4,x1x2=﹣2k+8,
故有:(﹣2k+8)[42﹣2(﹣2k+8)]=24,
整理得:k2﹣4k+3=0,
解得:k1=3,k2=1,
又由(1)中可知k≥2,
∴k的值为k=3.
故答案为:k=3.
22.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,BC∥x轴.
(1)求k的值;
(2)以AB、BC为边作菱形ABCD,求D点坐标.
【分析】(1)根据点A(1,a)在y=2x上,可以求得点A的坐标,再根据反比例函数y=(k≠0)的图象与反比例函数y=2x的图象相交于A(1,a),即可求得k的值;
(2)因为B是反比例函数y=和正比例函数y=2x的交点,列方程可得B的坐标,根据菱形的性质可确定点D的坐标.
解:(1)∵点A(1,a)在直线y=2x上,
∴a=2×1=2,
即点A的坐标为(1,2),
∵点A(1,2)是反比例函数y=(k≠0)的图象与正比例函数y=2x图象的交点,
∴k=1×2=2,
即k的值是2;
(2)由题意得:=2x,
解得:x=1或﹣1,
经检验x=1或﹣1是原方程的解,
∴B(﹣1,﹣2),
∵点A(1,2),
∴AB==2,
∵菱形ABCD是以AB、BC为边,且BC∥x轴,
∴AD=AB=2,
∴D(1+2,2).
23.如图,在Rt△ABC中,∠C=90°,点O在AC边上,以OA为半径的半圆O交AB于点D,交AC于点E,在BC边上取一点F,连接FD,使得DF=BF.
(1)求证:DF为半圆O的切线;
(2)若AC=8,BC=6,CF=2,求半圆O的半径长.
【分析】(1)连接OD,根据BF=DF,得∠B=∠BDF,证明∠BDF+∠ODA=90°,得∠ODF=90°,进而可得结论;
(2)设半径为r,连接OD,OF,则OC=8﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.
【解答】(1)证明:连接OD,如图1,
∵BF=DF,
∴∠B=∠BDF,
∵∠C=90°,
∴∠OAD+∠B=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA+∠BDF=90°,
∴∠ODF=90°,
∴DF是半圆O的切线;
(2)解:连接OF,OD,如图2,
设圆的半径为r,则OD=OE=r,
∵AC=8,BC=6,CF=2,
∴OC=8﹣r,DF=BF=6﹣2=4,
∵OD2+DF2=OF2=OC2+CF2,
∴r2+42=(8﹣r)2+22,
∴r=.
故圆的半径为.
24.物价问题涉及民生,关系全局,为保证市场秩序稳定,某超市积极配合市场运作,诚信经营.据了解,该超市每天调运一批成本价为8元/千克的大蒜,以不超过12元/千克的单价销售,且每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系如图所示.
(1)求出每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系式;
(2)该超市将大蒜销售单价定为多少元时,每天销售大蒜的利润可达到318元;
(3)求该超市大蒜销售单价定为多少元时,每天销售大蒜的利润最大,并求出最大利润.
【分析】(1)利用待定系数法求解可得;
(2)根据“总利润=单件利润×销售量”列出方程,求出答案;
(3)根据“总利润=单件利润×销售量”列出函数关系式,利用二次函数对称性得出答案.
解:(1)设y与x之间的函数关系式为y=kx+b,
将(9,110),(10,108)代入,得,
解得:,
∴y与x之间的函数关系式为y=﹣2x+128(8≤x≤12);
(2)根据题意得:(x﹣8)y=(x﹣8)(﹣2x+128)=318,
解得:x=11或61(舍去),
∴x=11.
即:超市将大蒜销售单价定为11元时,每天销售大蒜的利润可达到318元;
(3)设每天的销售利润为W(元),则:
W=(x﹣8)y
=(x﹣8)(﹣2x+128)
=﹣2(x﹣8)(x﹣64),
∵a=﹣2<0,
∴当即x<36时,W随x的增大而增大,
∵8≤x≤12,
∴当x=12时,W取得最大值,最大值为416.
答:当超市大蒜销售单价定为12元时,每天销售大蒜的利润最大,最大利润是416元.
25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.
(1)若该二次函数图象的对称轴为直线x=4时:
①求二次函数的表达式;
②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;
(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.
【分析】(1)①利用待定系数法,对称轴公式构建方程组求出b,c即可.
②如图1中,设M(m,m2﹣8m+12),求出直线BC的解析式,构建二次函数,利用二次函数的性质解决问题即可.
(2)结论:m+n的值为定值.由题意直线BC的解析式为y=(6+b)x﹣36﹣6b,因为MN∥CB,所以可以假设直线MN的解析式为y=(6+b)x+b′,由,消去y得到:x2﹣6x﹣36﹣6b﹣b′=0,利用根与系数的关系即可解决问题.
解:(1)①由题意,
解得,
∴二次函数的解析式为y=x2﹣8x+12.
②如图1中,设M(m,m2﹣8m+12),
∵B(6,0),C(0,12),
∴直线BC的解析式为y=﹣2x+12,
∵MQ⊥x轴,
∴Q(m,﹣2m+12),
∴QM=﹣2m+12﹣(m2﹣8m+12)=﹣m2+6m=﹣(m﹣3)2+9,
∵﹣1<0,
∴m=3时,QM有最大值,最大值为9.
(2)结论:m+n的值为定值.
理由:如图2中,
由题意B(6,0),C(0,﹣36﹣6b),
设直线BC的解析式为y=kx﹣36﹣6b,
把(6,0)代入得到:k=6+b,
∴直线BC的解析式为y=(6+b)x﹣36﹣6b,
∵MN∥CB,
∴可以假设直线MN的解析式为y=(6+b)x+b′,
由,消去y得到:x2﹣6x﹣36﹣6b﹣b′=0,
∴x1+x2=6,
∵点M、N的横坐标为m、n,
∴m+n=6.
∴m+n为定值,m+n=6.
湖北省江汉油田、潜江市、天门市、仙桃市2022-2023学年九年级上学期期中数学试卷 (含答案): 这是一份湖北省江汉油田、潜江市、天门市、仙桃市2022-2023学年九年级上学期期中数学试卷 (含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年湖北省仙桃市中考数学真题(word版含答案): 这是一份2022年湖北省仙桃市中考数学真题(word版含答案),共36页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2011-2012学年湖北省仙桃市九年级(下)期中数学试卷: 这是一份2011-2012学年湖北省仙桃市九年级(下)期中数学试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。