|学案下载
终身会员
搜索
    上传资料 赚现金
    第23讲 相似与圆-讲义2021-2022学年人教版九年级数学下册学案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      第23讲 相似与圆-讲义2021-2022学年九年级数学人教版下册(教师版).doc
    • 学生
      第23讲 相似与圆-讲义2021-2022学年九年级数学人教版下册(学生版).doc
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案01
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案02
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案03
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案01
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案02
    第23讲  相似与圆-讲义2021-2022学年人教版九年级数学下册学案03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第23讲 相似与圆-讲义2021-2022学年人教版九年级数学下册学案

    展开
    这是一份第23讲 相似与圆-讲义2021-2022学年人教版九年级数学下册学案,文件包含第23讲相似与圆-讲义2021-2022学年九年级数学人教版下册学生版doc、第23讲相似与圆-讲义2021-2022学年九年级数学人教版下册教师版doc等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。

    第23讲 相似与圆
    知识导航
    1.垂径定理及其推论.
    2.圆周角定理及其推论.
    3.切线的判定及其性质.
    4.切线长定理.
    5.三角形相似的判定及其性质.
    【板块一】 求线段比值
    方法技巧
    1.构造A型或X型相似求比值.
    2.用等线段代换求比值.
    3.利用两比值相乘求比值.
    题型一 直接计算法求比值
    【例1】如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且=.
    (1)求证:PD是⊙O的切线;
    (2)若AD=12,AM=MC,求的值.

    【解析】(1)略;
    (2)连接CD,由(1)可知:PC=PD,∵AM=MC,∴AM=2MO=2R,在Rt△AOD中,OD2+AD2=OA2,∴R2+122=9R2,∴R=3,∴OD=3,MC=6.∵==,∴DP=6,易得BP=CP=DP=6,∵MC是⊙O的直径,∴∠BDC=∠CDM=90°,在Rt△BCM中,∵BC=2DP=12,MC=6,∴BM=6,可证△BCM∽△CDM,∴=,得MD=2,∴==.

    题型二 构造A型或X型相似求比值.
    【例2】如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D.
    (1)求证:AO⊥BC;
    (2)若BC=6,AB=3,求的值.

    【解析】(1)延长AO交BC于点E,连接OB.∵OB=OC,AB=AC,∴点A、O均在BC的垂直平分线上,∴BE=EC,AO⊥BC;
    (2)延长CO交⊙O于点F.AE==9.设AO=x,则OE=9-x,32+(9-x)2=x2,x=5.∴FC=2x=10.∵BC=6.∠FBC=90°,∴BF=8.可证AE∥FB.∴==.

    题型三 先等量代换后用三角形相似求比值
    【例3】如图,AB为⊙O的直径,半径OD⊥AB,C为上-点,CD交AB于点F.若F为AO的中点,求的值.

    【解析】过点D作CD的垂线交CB的延长线于点E.易证∠C=∠DOB=45°.
    ∵CD⊥DE,∴∠E=∠C=45°,∴CD=DE.设OF=AF=1,则AO=OD=OB=2,BD=2,BF=3.连接AD,易证∠BDE=∠ADC=∠ABC,△CBF∽△EDB,∴==,∵DE=CD,∴=.
    题型四 运用乘积求比值(·=)
    【例4】如图,AB是⊙O的直径,点C,E在⊙O上,过点C作AB的垂线分别交AB,AE于点H,D.若=,AE=4BE,求的值.

    【解析】易证△ACB∽△AHC,==,易证△AEB∽△AHD,==4,∴·=×4=6,故=6.

    针对练习1
    1.如图,在Rt△ABC中,∠ACB=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若=,求的值.

    解:(1)略;
    (2)连接OC,则OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,∴=,=,∴=,∵=,设EA=2k,AO=3k,∴EB=8k,EO=5k,∴==.

    2. 如图,△ABC内接于. AH⊥BC于点H,连接OC,过点A作的切线,交CB的延长线于点E.
    (1)求证:∠BAH=∠ACO;
    (2)若AC=24,AH=18,OC=13,求的值.

    解:(1)连接AO并延长交于点D.连接CD.易证∠BAH=∠DAC=∠ACO;
    (2)连接BD. ∵AD为直径. ∴∠ACD=90.易证△ABH∽△ADC.
    ∴ ∴ .
    可证. 又∠E=∠E
    ∴ ∴ .



    3. 如图,以Rt△ABC斜边AB上一点O为圆心,OB为半径的圆切AC于点D,与AB交于另一点E,BC交于点F,连接OD,BD.
    (1)求证:∠AOD=2∠CBD;
    (2)若,求的值.

    解:(1)略;
    (2) 连接EF交OD于点H,设CF=.则CE=17. EF=4,
    可得EH=HF=2,DH=CF=,设OH=,则OD=OE=+,
    ,,∴ , ∴.



    4. 如图,在△ABC中,AB=AC=BC,以AB为直径作,交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
    (1)求证:DH为的切线;
    (2)若A为EH的中点,求的值.

    解:(1)略;
    (2)设EA=AH=2,则EH=HC=4,AC=6. OD=AC=3,OD//AC得
    . . 易证△FOD∽△FDB,
    ∴.∴.故.




    【板块二】求线段长
    方法技巧
    1.用方程思想求线段长.
    2.用全等(或相似)找线段之间的关系.
    3.用特殊边角关系找线段之间的关系.

    题型一 用全等找线段关系,列方程求解
    【例1】如图,∠ABD=90°,AB是的直径,交AD于点C.CE∥AB交于点E,AE=2AC.AB=.求CD的长.

    【解析】连接BE,BC.易证△BCA≌△AEB,
    ∴AE=BC=2AC.设AC=,则BC=2,AB=,=1
    易证△ABC∽△ADB.∴=AC·AD.得AD=5.
    ∴CD=AD-AC=5-1=4.

    题型二 用相似找线段关系,列方程求解
    【例2】如图,在Rt△ABC中,∠ACB=90°,点O是AC上一点,以OC为半径作与AB相切于点D,交AC于点E,OB交CD于点F.
    (1)求证:OB·DE=;
    (2)若,AB=10,求半径.

    【解析】(1)易证=OF·OB,DE=2OF,OC=CE.
    ∴DE·0B,.∴OB·DE=;
    (2)设OF=,则OB=5,,
    ∴OC=..由DE∥OB可得.
    ∴,.,,.

    题型三 利用特殊边角关系找联系
    【例3】如图,点O,E分别为△ABC的外心和内心,AB=AC,AE的延长线交于点D,交BC于点F.
    (1)求证:BD=DE;
    (2)若∠BAC=30°,BD=,求OE的长.

    【解析】(1)连接BE,易证∠DBE=∠DEB,∴BD=DE;
    (2) 连接BO.易证AF⊥BC,BF=FC.∴点O在AD上.
    设BF=.∠BOF=2∠BAF=∠BAC=30°.∴OB=2BF=2,OF=,DF=.
    易证△BDF∽△ADB.∴,
    解得,∴OE=OD-DE=OB-BD=2-




    针对练习2
    1.如图,AB是的直径,点C在上,CD是的切线,AD⊥CD,垂足为D,E是AB延长线上点.CE交于点F,连接OC,AC.
    (1)求证:AC平分∠DAO;
    (2)连接BF,若∠DAO=105°,∠E=30°,AC=4+,求BF的长.

    解:(1)略;
    (2)过点O作OG⊥CE,垂足为G.易证∠C0A=75°,∠OCG=45°.
    设CG=,则GF=CG=OG=.
    OE=2.GE=.EF=,AE=(2+).易证△EFB∽△EAC.
    ∴,,∴.





    2.如图,△ABC内接于,AB是的直径,I是△ABC内一点,AI的延长线交BC于点D,交于点E,连接BE,BI,BE=EI,BI平分∠ABC,若OI⊥AE于点I,BA=,求CD的长.

    解:易证∠BAE=∠CBE=∠CAE.OI⊥AE,
    ∴AI-EI=BE.设BE=,则AE=2,,
    ,,,.易证△BED∽△AEB.
    ∴.可得ED=,.易证△ABE∽△ADC,
    ,得CD= .




    3. 如图,A,B,C三点在上,直径BD平分∠ABC,过点D作DE//AB交弦BC于点E,在BC的延长线上取一点F,使得EF=DE.
    (1)求证:DF是的切线;
    (2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.

    解:(1)略;
    (3) 连接CD,易证△ABD≌△CBD. ∴CD=AD=4,AB=BC.
    ∵DE=5, ∴CE=3. EF=DE=5.
    ∵∠CBD=∠BDE,∴BE=DE=5.
    ∴BF=BE+EF=10,BC=BE+EC=8.
    ∴AB=BC=8. ∵DE/AB. ∴△ABF∽△MEF.
    ∴. ∴ME=4. ∴DM=DE-EM=1.



    【板块三】求线段之积
    方法技巧
    1.直接法:分别求出两条线段长.
    2.整体法:利用三角形相似求两条线段之积.

    题型一 利用母子相似求同一直线上两条线段之积
    【例1】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,是△ABC的外接圆,AD是的直径.
    (1)求证:PA是的切线;
    (2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,∠P=45°,CP=AP,若AG·AB=15,求CP的长。

    【解析】(1)略;
    (2)易证△ACG∽△ABC,得=AG·AB=15,
    过点C作CM⊥AP,垂足为点M,设CP=,则AP=,
    易证CM=MP=,则AM=,AC=,
    ∴5=15,=3,x=.故CP==.


    题型二 利用射影定理求同一直线上两条线段之积
    【例2】在中,,AD⊥AB交BC延长线于点D,连接AO,AB=8.
    (1)求BC·BD的值;
    (2)若OA=5,求CD的长.

    【解析】(1)延长AO交BC于点E,易证AE⊥BC,
    BE=EC=BC.易证△ABE∽△DBA,∴=BE·BD=64.
    ∴BC·BD=64. BC·BD=128.
    (2)过.点O作OF⊥AB于点F,则AF=BF=4,OF=3,
    易证△AOF∽△ABE,得BE=.BC=2BE=.由(1)知BD=. CD=BD-BC=.


    题型三 利用相似求不在同一条直线上两条线段之积
    【例3】如图,AB,CD都是的直径,DB的延长线与过点C的切线交于点P,CE⊥AB,垂足为点E.AD=2,求CE·CP的值.

    【解析】连接BC,AC,易证四边形ADBC为矩形,∴CB=AD=2.
    易证△CEB∽△CBP,得CE·CP==4.

    针对练习3
    1.如图.CD为的直径,AD,AB,BC分别与相切于点D,E,C(AD (1)求证:BC=BP;
    (2)若DE·OB=40,求AD·BC的值.

    解:(1)略:
    (2)连接QA,CE. EC交0B于点K.易证:OK=DE,
    △OCK∽△OBC,∴,
    易证△AOD≌△AOE,∴∠AOD=∠A0E,同法证明,
    ∠BOE=∠BOC,易证△ADO∽△OCB. ∴AD·BC=OD.OC==20.




    2.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,点D在AB的延长线上,且BD=6,过点D作DE ⊥AD交AC的延长线于点E,以DE为直径的交AE于点F.
    (1)求的半径;
    (2)设CD交于点Q,求BQ·BE的值.

    解:(1)的半径为6;
    (2)易证B.Q,E三点共线,易证△BDQO∽△BED,BQ·BE==36.


    3.如图,I为△ABC的内心,AB=AC,BI的延长线交△ABC的外接圆于点D,∠BDC的平分线交AC于点E.若EC=1,AE=4.求BI·ID的值.

    解:连接Al,Cl.易证DI=DC. 易证△ABI∽△DCE,
    得BI·CD=AB·CE=5.
    ∵ID=CD.
    ∴BI·ID=BI·CD=5.

    【板块四】经典图形研究
    方法技巧
    1.切割图(也叫弦切图)中相似问题(切割线定理)
    2.切割线加垂直的图中,作高构造矩形求解.
    3.双切图中隐含射影定理的结论(知二求五).

    题型一 切割图
    【例1】如图,AB是⊙O的直径,AC为弦,过点C的切线与AB的延长线交于点P,弦CE=AC,连接EB并延长并CP于点H.
    (1)求证:BH⊥CP;
    (2)若AC=6,AB=,求PH的长.

    【解析】(1)略;
    (2)连接CO,CB,BC=,易证△PCB∽△PAC,,设PB=x,则PC=2PB=2x,PA=2PC=4x,AB=PA-PB=3x=,x=.BP=,PC=,PO=.BH∥OC,得,∴PH=PC=


    题型二 切割图+垂直
    【例2】如图,AB是⊙O的直径,AC为弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.若,求的值.

    【解析】连接OD,BC,过点O作OM⊥AE,垂足为点M,设AC=6,则AB=10,AM=MC=3,易证四边形MODE为矩形,∴ME=OD=5,AE=3+5=8,OD∥AE得


    题型三 双切图
    【例3】如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB,PC,PC交AB于点E,且PA=PB.
    (1)求证:PB是⊙O的切线;
    (2)若∠APC=3∠BPC,求的值.

    【解析】(1)略;
    (2)连接OP交AB于点K,连接OB,BC,易证BC=2OK,设OK=a,则BC=2a,易证BC=PB=PA=2a,由△PAK∽△POA,可得,设PK=x,则有,解得(负根舍去),PK=,可得
    题型四 多切线图
    【例4】如图,⊙O是△ABC的内切圆,D,E,F为切点,AB=AC.
    (1)求证:BD=DC;
    (2)若,O的半径为1,求EF的长.

    【解析】(1)AE=AF,BD=BE,CD=CF,AB=AC,则AB-AE=AC-AF,BE=CF,∴BD=DC;
    (2)连接OE,AO,OD,证A,O,D三点共线.设EF交AO于点H.设AE=2x,EB=3x,则AB=5x,BD=BE=3x,易证△AEO∽ADB,∴,得AO=,AE=.又,EH=,∴

    题型五 切径图(切线+过切点的直径)
    【例5】如图,AB是⊙O的直径,AT是O的直径,BT交O于点C,D是O上一点,∠ATB=2∠CDO,AB=40,AT=30,求CD的长.

    【解析】延长DO交BT于点F.连接AC,OC.易证∠ATB=∠CAB=∠COB,又∠ATB=2∠CDO=∠COF,∴∠COF=∠COB,∵OC=OB,∴OF⊥BT,CF=FB=BC,BT=,易证ABCTBA,得,BC=32,∴CF=BF=16,OF=.FD=12=20=32,∴DC=




    针对练习4
    1.如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.
    (1)求证:;
    (2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=,PB=4,求GH的长.

    解:(1)易证△OFD∽△OCP,∴,∴,∵OD=OC,∴;
    (2)如图,过点C作CM⊥OP于点M,连接EC,EO,设OC=OB=r,在Rt△POC中,,,∴r=2.可得EF=CM=,
    在Rt△OEF中,,∴EC=2OF=,∵EC∥OB,∴,∵GH∥CM,,∴GH=

    2.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线,交AC于点E,交AB的延长线于点F.
    (1)求证:DE⊥AC;
    (2)若AB=10,AE=8,求DF的长.

    解:(1)略;
    (2)连接OD,过点O作OM⊥AC,垂足为M,易证四边形ODEM为矩形.∴ME=OD=5,AM=8-5=3,∴OM=4,易证△ODF∽△AMO,∴,DF=

    3.如图,AB,AC分别是⊙O的直径和弦,点D为劣弦AC上一点,弦DE⊥AB分别交⊙O于点D,E,交AB于点H,交AC于点F,P是ED延长线一点,且PC=PF.
    (1)求证:PC是O的切线;
    (2)若,求证:CF=EF;
    (3)在(2)条件下,若OH=1,AH=2,直接写出线段PC的长.

    解:(1)(2)略;
    (3)由(2)可知:AD=CD,∠ACD=∠CAD.∵∠PCD=∠CAD,∵OH=1,AH=2,∴OD=3,DH=,DE=2DH=,AD=,,,∴DF=,∵PC=PF,,,∴,
    ∴PD=,∴,∴PC=




    4.如图,在四边形ABCD中,AB⊥AD,AB⊥BC,以AB为直径的⊙O与CD相切于点E,延长AB交DC延长线于点F,连接AC交OE于点G,设AB=4,BC=1
    (1)求△ADF的周长;
    (2)直接写出的值.

    解:(1)可求出DE=AD=4,证△FBC∽△FAD,∴,∴,,∴FB=,FA=,在Rt△FBC中,,
    ∴FD=FC+CE+DE=,△ADF的周长为16
    (2)连接OC,AE,证OC∥AE,△COG∽△AEG,△FCO∽△FEA,∴,,,又FC=,FE=FC+CE=FC+BC=,∴








    相关学案

    初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.4 圆周角学案: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.4 圆周角学案,共10页。学案主要包含了重要考点目录,重要考点讲解,知识精讲,典例精讲等内容,欢迎下载使用。

    九年级数学 培优竞赛新方法-第21讲 圆与圆 讲义学案: 这是一份九年级数学 培优竞赛新方法-第21讲 圆与圆 讲义学案,共11页。

    初中数学第二十七章 相似综合与测试学案: 这是一份初中数学第二十七章 相似综合与测试学案,文件包含人教版九年级数学下册同步精品第9讲相似单元检测教师版doc、人教版九年级数学下册同步精品第9讲相似单元检测学生版doc等2份学案配套教学资源,其中学案共63页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map