![苏教版7下数学总复习(3)-教师第1页](http://www.enxinlong.com/img-preview/2/3/12562655/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏教版7下数学总复习(3)-教师第2页](http://www.enxinlong.com/img-preview/2/3/12562655/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏教版7下数学总复习(3)-教师第3页](http://www.enxinlong.com/img-preview/2/3/12562655/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏教版7下数学总复习(3)-学生第1页](http://www.enxinlong.com/img-preview/2/3/12562655/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏教版7下数学总复习(3)-学生第2页](http://www.enxinlong.com/img-preview/2/3/12562655/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![苏教版7下数学总复习(3)-学生第3页](http://www.enxinlong.com/img-preview/2/3/12562655/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2020-学年苏科版七年级数学下册讲义(学生版+教师版)
综合复习(3)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案
展开
这是一份综合复习(3)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案,文件包含苏教版7下数学总复习3-学生docx、苏教版7下数学总复习3-教师docx等2份学案配套教学资源,其中学案共25页, 欢迎下载使用。
第三讲:总复习(3) 一、主要内容 1、二元一次方程组的相关概念 2、二元一次方程组的解法3、实际问题与二元一次方程组 4、三元一次方程组 二、基本概念1、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用和),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组.要点诠释:(1)它的一般形式为(其中,,,不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个. 1.下列方程组中,不是二元一次方程组的是( ).A. B. C. D. 举一反三:【变式】若是二元一次方程,则a= ,b= . 2.以 为解的二元一次方程组是( ).A. B. C. D.举一反三:【变式】若 是关于的方程的解,则 . 2、二元一次方程组的解法1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式;②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程;③解这个一元一次方程,求出(或)的值;④把(或)的值代入(或)中,求(或)的值;⑤用“”联立两个未知数的值,就是方程组的解.要点诠释: (1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用“”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.3.解方程组 举一反三:【变式】已知方程组的解是二元一次方程m(x+1)=3(x-y)的一个解,则m= .4. 若二元一次方程组的解为,则a+b等于( ).A.1 B.6 C. D.3、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.5. 2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额. 年份20022003200420052007降价金额(亿元)54 3540 举一反三:【变式】如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格. 4、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是: (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组. 6.解方程组 三、课堂讲解 1.在下列方程中,只有一个解的是( ) A. B. C. D. 2、若关于x、y的方程是二元一次方程,则m = .3、已知方程组有无数多个解,则a、b 的值等于 . 4、解方程组5、(换元思想)解方程组6、方程的整数解的个数是 .7、已知二元一次方程组 的解为,,则 .8、用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽.9、如图,长方形ABCD中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积. 10、某校为七年级学生安排宿舍,若每间宿舍住5人,则有4人住不下;若每间宿舍住6人,则有一间只住4人,且空两间宿舍,求该年级寄宿生人数及宿舍间数. 11、现有面值为2元、1元和5角的纸币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种面值各多少张? 【达标检测】一、选择题1.解方程时,去分母正确的是( ). A.3(x+1)=1-5(2x-1) B.3x+3=15-10x-5 C.3(x+1)=15-5(2x-1) D.3x+1=15-10x+52. 某书中一道方程题:,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是,那么□处应该是数字( ). A.-2.5 B.2.5 C.5 D.73.已知式子与是同类项,那么a,b的值分别是( )A. B. C. D.4.船在顺水中的速度为50千米/小时,在逆水中的速度为30千米/小时,则水流的速度为( ).
A.10千米/小时 B.20千米/小时 C.40千米/小时 D.30千米/小时 二、填空题5.若x=-2是关于x的方程的解,则a= .6.由3x=2x+1变为3x-2x=1,是方程两边同时加上 .7. 关于方程,当时,它为一元一次方程,当时,它为二元一次方程.8.当x= 时,代数式的值相等. 三、解答题9. 解下列方程组:(1) ; (2)解方程组 10、已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
相关学案
这是一份2020-2021学年9.5 多项式的因式分解学案及答案,文件包含96因式分解-教师docx、96因式分解-学生docx等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。
这是一份综合复习(2)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案,文件包含苏教版7下数学总复习2-学生docx、苏教版7下数学总复习2-教师docx等2份学案配套教学资源,其中学案共14页, 欢迎下载使用。
这是一份综合复习(4)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案,文件包含苏教版7下数学总复习4-学生docx、苏教版7下数学总复习4-教师docx等2份学案配套教学资源,其中学案共21页, 欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)