终身会员
搜索
    上传资料 赚现金

    专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)

    立即下载
    加入资料篮
    专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第1页
    专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第2页
    专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第3页
    还剩53页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)

    展开

    这是一份专题21.20 《一元二次方程》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共56页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


    专题21.20 《一元二次方程》中考真题专练
    (巩固篇)(专项练习)
    一、单选题
    1.(2017·浙江温州·中考真题)我们知道方程的解是,,现给出另一个方程,它的解是( )
    A., B., C., D.,
    2.(2019·山西中考真题)解一元二次方程x2+4x-1=0,配方正确的是( )
    A. B. C. D.
    3.(2020·山东聊城市·中考真题)用配方法解一元二次方程,配方正确的是( ).
    A. B.
    C. D.
    4.(2021·山东泰安·)已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是(  )
    A. B.
    C.且 D.
    5.(2021·江苏无锡·)在中,,,,点P是所在平面内一点,则取得最小值时,下列结论正确的是( )
    A.点P是三边垂直平分线的交点 B.点P是三条内角平分线的交点
    C.点P是三条高的交点 D.点P是三条中线的交点
    6.(2020·广东广州·中考真题)直线不经过第二象限,则关于的方程实数解的个数是( ).
    A.0个 B.1个 C.2个 D.1个或2个
    7.(2020·山东潍坊·中考真题)关于x的一元二次方程根的情况,下列说法正确的是( )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.无实数根 D.无法确定
    8.(2021·湖北荆州·中考真题)定义新运算“※”:对于实数,,,,有,其中等式右边是通常的加法和乘法运算,如:.若关于的方程有两个实数根,则的取值范围是( )
    A.且 B. C.且 D.
    9.(2019·河北中考真题)小刚在解关于x的方程时,只抄对了,,解出其中一个根是.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是( )
    A.不存在实数根 B.有两个不相等的实数根
    C.有一个根是x=-1 D.有两个相等的实数根
    10.(2020·湖北随州·中考真题)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
    A. B. C. D.
    11.(2021·西藏)已知一元二次方程x2﹣10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )
    A.6 B.10 C.12 D.24
    12.(2020·上海中考真题)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是(   )
    A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0
    13.(2019·四川内江·中考真题)一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的周长是(  )
    A.16 B.12 C.14 D.12或16
    14.(2011·贵州毕节·中考真题)三角形两边长分别为3和6,第三边是方程的解,则这个三角形的周长是( )
    A.11 B.13 C.11或13 D.不能确定
    15.(2018·台湾中考真题)若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?(  )
    A.﹣25 B.﹣19 C.5 D.17
    16.(2021·四川宜宾·中考真题)若m、n是一元二次方程x2+3x﹣9=0的两个根,则的值是( )
    A.4 B.5 C.6 D.12
    17.(2021·湖北武汉·中考真题)已知,是方程的两根,则代数式的值是( )
    A.-25 B.-24 C.35 D.36
    18.(2021·四川南充·中考真题)已知方程的两根分别为,,则的值为( )
    A. B. C. D.
    19.(2014·江西南昌·中考真题)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为(  )
    A.10 B.9 C.7 D.5
    20.(2020·江苏南京·中考真题)关于x的方程(为常数)根的情况下,下列结论中正确的是( )
    A.两个正根 B.两个负根
    C.一个正根,一个负根 D.无实数根
    21.(2020·山东菏泽·中考真题)等腰三角形的一边长是,另两边的长是关于的方程的两个根,则的值为( )
    A. B. C.或 D.
    22.(2021·辽宁阜新市教育服务中心中考真题)在育红学校开展的课外阅读活动中,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为x,根据题意,所列方程正确的是( )
    A. B.
    C. D.
    23.(2019·广西玉林·中考真题)若一元二次方程的两根为,,则的值是( )
    A.4 B.2 C.1 D.﹣2
    24.(2020·湖北鄂州·中考真题)目前以等为代表的战略性新兴产业蓬勃发展.某市2019年底有用户2万户,计划到2021年底全市用户数累计达到8.72万户.设全市用户数年平均增长率为,则值为( )
    A. B. C. D.
    25.(2019·内蒙古通辽·中考真题)一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为(  )
    A.48 B.24 C.24或40 D.48或80
    26.(2019·四川达州·中考真题)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( )
    A.
    B.
    C.
    D.
    27.(2019·黑龙江伊春·中考真题)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是(  )
    A. B. C. D.
    28.(2021·河南中考真题)如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )

    A. B. C. D.
    29.(2019·湖南郴州·中考真题)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知,,,则正方形ADOF的边长是( )

    A. B.2 C. D.4


    二、填空题
    30.(2020·山东枣庄·中考真题)已知关于x的一元二次方程有一个根为,则a的值为________.
    31.(2019·四川资阳·中考真题)a是方程的一个根,则代数式的值是_______.
    32.(2021·山东枣庄·中考真题)若等腰三角形的一边长是4,另两边的长是关于的方程的两个根,则的值为______.
    33.(2021·湖北鄂州·)已知实数、满足,若关于的一元二次方程的两个实数根分别为、,则_____________.
    34.(2021·江苏宿迁·中考真题)方程的解是_____________.
    35.(2021·浙江丽水·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:
    已知实数同时满足,求代数式的值.

    结合他们的对话,请解答下列问题:
    (1)当时,a的值是__________.
    (2)当时,代数式的值是__________.
    36.(2020·山东烟台·中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是______.
    37.(2021·四川遂宁·)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.

    38.(2020·江苏南通·中考真题)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于_____.
    39.(2020·贵州黔南·中考真题)对于实数a,b,定义运算“”,例如,因为,所以.若是一元二次方程的两个根,则_________.
    40.(2020·湖北孝感·中考真题)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为______.

    41.(2020·四川内江·中考真题)已知关于x的一元二次方程有一实数根为,则该方程的另一个实数根为_____________
    42.(2021·四川阿坝·中考真题)三角形的两边长分别为4和7,第三边的长是方程的解,则这个三角形的周长是________.
    43.(2020·四川乐山·中考真题)已知,且.则的值是_________.
    44.(2020·湖南中考真题)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:
    x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).
    理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,
    因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.
    解决问题:求方程x3﹣5x+2=0的解为_____.
    45.(2019·四川泸州·中考真题)已知,是一元二次方程的两实根,则的值是_____.
    46.(2019·内蒙古呼和浩特·中考真题)对任意实数,若多项式的值总大于,则实数的取值范围是_____.
    47.(2019·湖北荆门·中考真题)已知是关于的方程的两个不相等实数根,且满足,则的值为__________.
    48.(2019·湖北中考真题)对于实数,定义运算“◎”如下:◎.若◎,则_____.
    49.(2019·江苏中考真题)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.
    50.(2020·湖南中考真题)如图1,已知四边形ABCD是正方形,将,分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为_____.

    51.(2020·辽宁抚顺·中考真题)如图,在中,,,分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和,作直线,交于点,连接,若,则的长为_________.

    52.(2011·四川绵阳市·中考真题)观察下面的图形,它们是按一定规律排列的,依照此规律,第__________个图形共有120个★.

    53.(2015·山东日照市·中考真题)如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2015=_____________.
    54.(2021·江苏盐城·)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.
    55.(2021·湖南娄底·中考真题)已知,则________.
    56.(2020·山东济南·中考真题)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为_____米.

    57.(2017·上海中考真题)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是____________微克/立方米.
    58.(2018·湖南张家界·中考真题)关于x的一元二次方程有两个相等的实数根,则______.
    59.(2020·辽宁大连·中考真题)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.
    60.(2020·山西中考真题)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.

    61.(2019·宁夏中考真题)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)

    62.(2018·山东济南市·中考真题)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.

    63.(2014·四川甘孜·中考真题)如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为__.

    64.(2019·四川广元·中考真题)若关于x的一元二次方程有两个不相等的实数根,则点在第____象限.
    65.(2010·湖北荆门市·中考真题)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是_____.
    66.(2014·贵州贵阳·中考真题)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=_______秒时,S1=2S2.

    67.(2018·四川绵阳·中考真题)已知a>b>0,且,则=______.
    68.(2021·四川广安·中考真题)一个三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则三角形的周长为_____.
    69.(2018·湖北十堰·中考真题)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.
    70.(2018·山东烟台·中考真题)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.
    71.(2018·内蒙古通辽市·中考真题)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.

    三、解答题
    72.(2021·内蒙古通辽·中考真题)先化简,再求值:
    ,其中x满足.



    73. (2019·上海中考真题)解分式方程:.


    74.(2021·湖北荆门·中考真题)已知关于x的一元二次方程有,两实数根.
    (1)若,求及的值;
    (2)是否存在实数,满足?若存在,求出求实数的值;若不存在,请说明理由.



    75.(2021·湖南永州·中考真题)若是关于x的一元二次方程的两个根,则.现已知一元二次方程的两根分别为m,n.
    (1)若,求的值;
    (2)若,求的值.



    76.(2021·北京中考真题)已知关于的一元二次方程.
    (1)求证:该方程总有两个实数根;
    (2)若,且该方程的两个实数根的差为2,求的值.



    77.(2021·湖北十堰·)已知关于x的一元二次方程有两个不相等的实数根.
    (1)求实数m的取值范围;
    (2)若该方程的两个根都是符号相同的整数,求整数m的值.


    78.(2021·四川南充·中考真题)已知关于x的一元二次方程.
    (1)求证:无论k取何值,方程都有两个不相等的实数根.
    (2)如果方程的两个实数根为,,且k与都为整数,求k所有可能的值.

    79.(2021·山东日照·中考真题)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量(桶)与每桶降价(元)()之间满足一次函数关系,其图象如图所示:

    (1)求与之间的函数关系式;
    (2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?



    80.(2021·山东东营·)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
    (1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
    (2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.



    81.(2021·山东滨州·)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.
    (1)求该商品每次降价的百分率;
    (2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?


    82.(2021·湖北宜昌·中考真题)随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的和.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.
    (1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?
    (2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了,漫灌试验田的面积减少了.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了.经测算,今年的灌溉用水量比去年减少,求的值.
    (3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元.在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?



    83.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.
    (1)A、B两种产品的销售单价分别是多少元?
    (2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加%.求a的值.




    84.(2021·重庆)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.
    (1)求每份“堂食”小面和“生食”小面的价格分别是多少元?
    (2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加,这两种小面的总销售额在4月的基础上增加.求a的值.





























    参考答案
    1.D
    【解析】把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,
    所以2x+3=1或2x+3=﹣3,
    所以x1=﹣1,x2=﹣3.
    故选D.
    考点:一元二次方程的解.
    2.C
    【分析】方程移项后,两边加上2变形即可得到结果.
    解:方程移项得:x2+4x=1,
    配方得: x2+4x+4=5,
    ∴(x+2)2=5,
    故选:C.
    【点评】本题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题关键..
    3.A
    【分析】按照配方法的步骤进行求解即可得答案.
    解:
    移项得,
    二次项系数化1的,
    配方得

    故选:A
    【点拨】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.
    4.C
    【分析】由一元二次方程定义得出二次项系数k≠0;由方程有两个不相等的实数根,得出“△>0”,解这两个不等式即可得到k的取值范围.
    解:由题可得:,
    解得:且;
    故选:C.
    【点拨】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.
    5.D
    【分析】以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,则=,可得P(2,)时,最小,进而即可得到答案.
    解:以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,如图,
    则A(0,0),B(6,0),C(0,8),
    设P(x,y),则=
    ==,
    ∴当x=2,y=时,即:P(2,)时,最小,
    ∵由待定系数法可知:AB边上中线所在直线表达式为:,
    AC边上中线所在直线表达式为:,
    又∵P(2,)满足AB边上中线所在直线表达式和AC边上中线所在直线表达式,
    ∴点P是三条中线的交点,
    故选D.

    【点拨】本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.
    6.D
    【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.
    解:∵直线不经过第二象限,
    ∴,
    ∵方程,
    当a=0时,方程为一元一次方程,故有一个解,
    当a<0时,方程为一元二次方程,
    ∵∆=,
    ∴4-4a>0,
    ∴方程有两个不相等的实数根,
    故选:D.
    【点拨】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.
    7.A
    【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.
    解:△=(k-3)2-4(1-k)
    =k2-6k+9-4+4k
    =k2-2k+5
    =(k-1)2+4,
    ∴(k-1)2+4>0,即△>0,
    ∴方程总有两个不相等的实数根.
    故选:A.
    【点拨】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.
    8.C
    【分析】按新定义规定的运算法则,将其化为关于x的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.
    解:∵[x2+1,x]※[5−2k,k]=0,
    ∴.
    整理得,.
    ∵方程有两个实数根,
    ∴判别式且.
    由得,,
    解得,.
    ∴k的取值范围是且.
    故选:C
    【点拨】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.
    9.A
    【分析】直接把已知数据代入进而得出的值,再利用根的判别式求出答案.
    解:∵小刚在解关于x的方程()时,只抄对了,,解出其中一个根是,
    ∴,
    解得:,
    ∵核对时发现所抄的比原方程的值小2,
    故原方程中,
    则,
    则原方程的根的情况是不存在实数根.
    故选:A.
    【点拨】本题主要考查了根的判别式,正确利用方程的解得出c的值是解题关键.
    10.C
    【分析】先求得,代入即可得出答案.
    解:∵,
    ∴,,

    =
    =
    =
    =
    =,
    ∵,且,
    ∴,
    ∴原式=,
    故选:C.
    【点拨】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次.
    11.C
    【分析】利用因式分解法求出已知方程的解确定出菱形两条对角线长,进而求出菱形面积即可.
    解:方程x2﹣10x+24=0,
    分解得:(x﹣4)(x﹣6)=0,
    可得x﹣4=0或x﹣6=0,
    解得:x=4或x=6,
    ∴菱形两对角线长为4和6,
    则这个菱形的面积为×4×6=12.
    故选:C.
    【点拨】此题考查了求解一元二次方程和菱形的面积公式,难度一般.
    12.A
    【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.
    解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.
    故选:A.
    【点拨】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.
    13.A
    【分析】通过解一元二次方程求得等腰三角形的两个腰长,然后求该等腰三角形的周长.
    解:解方程,得:或,
    若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;
    若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,
    故选A.
    【点拨】此题考查三角形三边关系,等腰三角形的性质,解一元二次方程-因式分解法,解题关键在于掌握运算法则
    14.B
    解:试题分析:分解因式得:,可得或,解得:,,
    当时,三边长为2,3,6,不能构成三角形,舍去;
    当时,三边长分别为3,4,6,此时三角形周长为3+4+6=13.故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系.
    15.D
    解:分析:先利用因式分解法解方程得到a=11,b=﹣3,然后计算代数式a﹣2b的值.
    详解:(x﹣11)(x+3)=0,
    x﹣11=0或x﹣3=0,
    所以x1=11,x2=﹣3,
    即a=11,b=﹣3,
    所以a﹣2b=11﹣2×(﹣3)=11+6=17.
    故选D.
    点睛:本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
    16.C
    【分析】由于m、n是一元二次方程x2+3x−9=0的两个根,根据根与系数的关系可得m+n=−3,mn=−9,而m是方程的一个根,可得m2+3m−9=0,即m2+3m=9,那么m2+4m+n=m2+3m+m+n,再把m2+3m、m+n的值整体代入计算即可.
    解:∵m、n是一元二次方程x2+3x−9=0的两个根,
    ∴m+n=−3,mn=−9,
    ∵m是x2+3x−9=0的一个根,
    ∴m2+3m−9=0,
    ∴m2+3m=9,
    ∴m2+4m+n=m2+3m+m+n=9+(m+n)=9−3=6.
    故选:C.
    【点拨】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)两根x1、x2之间的关系:x1+x2=−,x1•x2=.
    17.D
    【分析】先根据已知可得,,a+b=3,然后再对变形,最后代入求解即可.
    解:∵已知,是方程的两根
    ∴,,a+b=3
    ∴=0+5+30+1=36.
    故选D.
    【点拨】本题主要考查了一元二次方程的解、根与系数的关系以及整式的变形,根据需要对整式灵活变形成为解答本题的关键.
    18.B
    【分析】根据一元二次方程解的定义及根与系数的关系可得,,再代入通分计算即可求解.
    解:∵方程的两根分别为,,
    ∴,,
    ∴,
    ∴=====-1.
    故选B.
    【点拨】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.
    19.A
    解:由题意可知:

    故选:A.
    【点拨】本题考查一元二次方程根与系数的关系、完全平方公式,正确运用一元二次方程根与系数的关系及完全平方式可以简便运算.
    20.C
    【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.
    解:,
    整理得:,
    ∴,
    ∴方程有两个不等的实数根,
    设方程两个根为、,
    ∵,
    ∴两个异号,而且负根的绝对值大.
    故选:C.
    【点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:,
    21.C
    【分析】分类讨论:当3为等腰三角形的底边,则方程有等根,所以△=0,求解即可,于是根据根与系数的关系得两腰的和=4,满足三角形三边的关系;当3为等腰三角形的腰,则x=3为方程的解,把x=3代入方程可计算出k的值即可.
    解:①当3为等腰三角形的底边,根据题意得△=(-4)2−4k=0,解得k=4,
    此时,两腰的和=x1+x2=4>3,满足三角形三边的关系,所以k=4;
    ②当3为等腰三角形的腰,则x=3为方程的解,把x=3代入方程得9−12+k=0,解得k=3;
    综上,k的值为3或4,
    故选:C.
    【点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解以及根与系数的关系等腰三角形的性质和三角形的三边关系,注意解得k的值之后要看三边能否组成三角形.
    22.A
    【分析】设该校七至九年级人均阅读量年均增长率为x,根据从七年级的每年100万字增加到九年级的每年121万字,即可得出关于x的一元二次方程.
    解:该校七至九年级人均阅读量年均增长率为x,
    依题意得:.
    故选:A.
    【点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    23.A
    【分析】根据一元二次方程根与系数的关系即可求解.
    解:根据题意得,,
    所以.
    故选A.
    【点拨】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.
    24.C
    【分析】先用含x的代数式表示出2020年底、2021年底用户的数量,然后根据2019年底到2021年底这三年的用户数量之和=8.72万户即得关于x的方程,解方程即得答案.
    解:设全市用户数年平均增长率为,根据题意,得:

    解这个方程,得:,(不合题意,舍去).
    ∴x的值为40%.
    故选:C.
    【点拨】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
    25.B
    【分析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.
    解:,
    所以,,
    ∵菱形一条对角线长为8,
    ∴菱形的边长为5,
    ∴菱形的另一条对角线为,
    ∴菱形的面积.
    故选B.
    【点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.
    26.D
    【分析】分别表示出5月,6月的营业额进而得出等式即可.
    解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:

    故选D.
    【点拨】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.
    27.C
    【分析】设这种植物每个支干长出x个小分支,根据主干、支干和小分支的总数是43,即可得出关于x的一元二次方程,解之取其正值即可得出结论
    解:设这种植物每个支干长出个小分支,
    依题意,得:,
    解得: (舍去),.
    故选C.
    【点拨】此题考查一元二次方程的应用,解题关键在于列出方程
    28.C
    【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.
    解:由图2可知,当P点位于B点时,,即,
    当P点位于E点时,,即,则,
    ∵,
    ∴,
    即,

    ∴,
    ∵点为的中点,
    ∴,
    故选:C.
    【点拨】本题考查了学生对函数图像的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图像中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.
    29.B
    【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程即可.
    解:设正方形ADOF的边长为x,
    由题意得:,,

    在Rt△中,,
    即,
    整理得,,
    解得:x=2或x=-12(舍去),

    即正方形ADOF的边长是2,
    故选B.
    【点拨】本题考查了正方形的性质、全等三角形的性质、一元二次方程的解法、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.
    30.-1.
    【分析】把代入方程,转化为关于a的一元二次方程,求得a值,结合二次项系数不能为零,确定结果即可.
    解:∵一元二次方程有一个根为,

    ∴a=1或a=-1,
    ∵方程是一元二次方程,
    ∴a-1≠0,
    ∴a=-1,
    故答案为:-1.
    【点拨】本题考查了一元二次方程的解的定义,解法,熟练理解定义,确保二次项系数不为零是解题的一个陷阱,要注意.
    31.8
    【分析】直接把a的值代入得出,进而将原式变形得出答案.
    解:∵a是方程的一个根,
    ∴,
    ∴.
    故答案为8.
    【点拨】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.
    32.8或9
    【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.
    解:由题意,分以下两种情况:
    (1)当4为等腰三角形的腰长时,则4是关于的方程的一个根,
    因此有,
    解得,
    则方程为,解得另一个根为,
    此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
    (2)当4为等腰三角形的底边长时,则关于的方程有两个相等的实数根,
    因此,根的判别式,
    解得,
    则方程为,解得方程的根为,
    此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
    综上,的值为8或9,
    故答案为:8或9.
    【点拨】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.
    33.
    【分析】根据非负性求得a、b的值,再根据一元二次方程根与系数关系求得+、,代入求解即可.
    解:∵实数、满足,
    ∴a﹣2=0,b+3=0,
    解得:a=2,b=﹣3,
    ∴,
    ∵一元二次方程的两个实数根分别为、,
    ∴+=2,=﹣3,
    ∴=,
    故答案为:.
    【点拨】本题考查代数式求值、二次根式被开方数的非负性、绝对值的非负性、一元二次方程根与系数,熟练掌握非负性和一元二次方程根与系数关系是解答的关键.
    34.,
    【分析】先把两边同时乘以,去分母后整理为,进而即可求得方程的解.
    解:,
    两边同时乘以,得

    整理得:
    解得:,,
    经检验,,是原方程的解,
    故答案为:,.
    【点拨】本题考查了分式方程和一元二次方程的解法,熟练掌握分式方程和一元二次方程的解法是解决本题的关键.
    35.或1 7
    【分析】(1)将代入解方程求出,的值,再代入进行验证即可;
    (2)当时,求出,再把通分变形,最后进行整体代入求值即可.
    解:已知,实数,同时满足①,②,
    ①-②得,

    ∴或
    ①+②得,
    (1)当时,将代入得,

    解得,,
    ∴,
    把代入得,3=3,成立;
    把代入得,0=0,成立;
    ∴当时,a的值是1或-2
    故答案为:1或-2;
    (2)当时,则,即





    故答案为:7.
    【点拨】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.
    36.且
    【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k的不等式,然后解不等式即可求解.
    解:∵关于的一元二次方程有两个不相等的实数根,
    ∴,,
    ∴的取值范围是且,
    故答案为:且.
    【点拨】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.
    37.20
    【分析】根据已知图形得出第n个图形中黑色三角形的个数为1+2+3++n=,列一元二次方程求解可得.
    解:∵第1个图形中黑色三角形的个数1,
    第2个图形中黑色三角形的个数3=1+2,
    第3个图形中黑色三角形的个数6=1+2+3,
    第4个图形中黑色三角形的个数10=1+2+3+4,
    ……
    ∴第n个图形中黑色三角形的个数为1+2+3+4+5++n=,
    当共有210个小球时,

    解得:或(不合题意,舍去),
    ∴第个图形共有210个小球.
    故答案为:.
    【点拨】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n个图形中黑色三角形的个数为1+2+3+……+n.
    38.2028
    【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.
    解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,
    ∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,
    则原式=x12﹣4x1+2x1+2x2
    =x12﹣4x1+2(x1+x2)
    =2020+2×4
    =2020+8
    =2028,
    故答案为:2028.
    【点拨】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.
    39.0
    【分析】求出的解,代入新定义对应的表达式即可求解.
    解:,
    解得:,
    即,
    则,
    故答案为:0.
    【点拨】此题主要考查了根与系数的关系,对新定义的正确理解是解题的关键.
    40.
    【分析】如图(见解析),设,先根据直角三角形的面积公式、正方形的面积公式求出的值,再根据建立等式,然后根据建立等式求出a的值,最后代入求解即可.
    解:如图,由题意得:,,,是直角三角形,且均为正数
    则大正方形的面积为
    小正方形的面积为





    又,即

    解得或(不符题意,舍去)
    将代入得:
    两边同除以得:


    解得或(不符题意,舍去)
    即的值为
    故答案为:.

    【点拨】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出的值是解题关键.
    41.
    【分析】根据一元二次方程的解的定义把x=-1代入原方程得到关于m的一元二次方程,解得m的值,然后根据一元二次方程的定义确定m的值.
    解:把x=-1代入得m2-5m+4=0,解得m1=1,m2=4,
    ∵(m-1)2≠0,
    ∴m1.
    ∴m=4.
    ∴方程为9x2+12x+3=0.
    设另一个根为a,则-a=.
    ∴a=-.
    故答案为: -.
    【点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.
    42.17
    【分析】先利用因式分解法求解得出x的值,再根据三角形三边之间的关系判断能否构成三角形,从而得出答案.
    解:解方程得x1=2,x2=6,
    当x=2时,2+4=6<7,不能构成三角形,舍去;
    当x=6时,2+6>7,能构成三角形,此时三角形的周长为4+7+6=17.
    故答案为:17.
    【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
    43.4或-1
    【分析】将已知等式两边同除以进行变形,再利用换元法和因式分解法解一元二次方程即可得.
    解:
    将两边同除以得:


    因式分解得:
    解得或
    即的值是4或
    故答案为:4或.
    【点拨】本题考查了利用换元法和因式分解法解一元二次方程,将已知等式进行正确变形是解题关键.
    44.x=2或x=﹣1+或x=﹣1﹣.
    【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.
    解:∵x3﹣5x+2=0,
    ∴x3﹣4x﹣x+2=0,
    ∴x(x2﹣4)﹣(x﹣2)=0,
    ∴x(x+2)(x﹣2)﹣(x﹣2)=0,
    则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,
    ∴x﹣2=0或x2+2x﹣1=0,
    解得x=2或x=﹣1,
    故答案为:x=2或x=﹣1+或x=﹣1﹣.
    【点拨】此题主要考查一元二次方程的应用,解题的关键是根据题意找到解方程的方法.
    45.16
    【分析】由根与系数的关系可得, ,然后把所求式子利用多项式乘法法则展开后代入进行计算即可.
    解:,是一元二次方程的两实根,
    , ,






    故答案为.
    【点拨】本题考查了一元二次方程根与系数的关系,代数式求值,熟练掌握根与系数的关系是解题的关键.
    46.;
    【分析】将已知转化为对任意实数a,3a2-5ab+2b2+3>0恒成立,利用△<0即可求解;
    解:由题意可知:,

    对任意实数恒成立,


    故答案为;
    【点拨】本题考查一元二次函数与一元二次不等式的关系;熟练掌握判别式与一元二次不等式值的关系是解题的关键.
    47.1 .
    【分析】根据根与系数的关系结合,可得出关于的一元二次方程,解之即可得出的值,根据方程的系数结合根的判别式,可得出关于的一元二次不等式,把k的值代入,进而即可确定值,此题得解.
    解:是关于的方程的两个实数根,
    .
    ,即,

    整理,得:,
    解得:.
    关于的方程的两个不相等实数根,

    当k=时,△=-<0,故k=不符合题意;
    当k=1时,△=4>0;

    故答案为1.
    【点拨】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合,求出值是解题的关键.
    48.-3或4
    【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.
    解:根据题意得,,


    或,
    所以.
    故答案为或.
    【点拨】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
    49.2.
    【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.
    解:根据题意得:
    △=4﹣4a(2﹣c)=0,
    整理得:4ac﹣8a=﹣4,
    4a(c﹣2)=﹣4,
    ∵方程ax2+2x+2﹣c=0是一元二次方程,
    ∴a≠0,
    等式两边同时除以4a得:,
    则,
    故答案为2.
    【点拨】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.
    50.12
    【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在中,由勾股定理得关于x的方程,解得x的值,即为DG的长.
    解:设正方形ABCD的边长为,则,
    由翻折的性质得:,,

    ∴,,
    ∴,
    如图,在中,由勾股定理得:

    整理得:,即
    解得或(不符题意,舍去)

    故答案为:12.

    【点拨】本题考查了正方形的性质、翻折的性质、勾股定理等知识点,熟练掌握翻折的性质是解题关键.
    51.5
    【分析】由题意可得:直线MN是AB的垂直平分线,从而有EA=EB,然后设BE=AE=x,则可用含x的代数式表示出BC,于是在Rt△BCE中根据勾股定理可得关于x的方程,解方程即可求出结果.
    解:由题意可得:直线MN是AB的垂直平分线,∴EA=EB,
    设BE=AE=x,则AC=x+3,
    ∵AC=2BC,
    ∴,
    在Rt△BCE中,由勾股定理,得,
    即,解得:(舍去),
    ∴BE=5.
    故答案为:5.
    【点拨】本题考查了线段垂直平分线的尺规作图和性质、勾股定理和一元二次方程的解法等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题关键.
    52.15
    【解析】分析:观察图形特点,从中找出规律,它们的★数分别是,1,3,6,10,15,…,总结出其规律,根据规律求解.
    解答:解:通过观察,得到星的个数分别是,1,3,6,10,15,…,
    第一个图形为:1×(1+1)÷2=1,
    第二个图形为:2×(2+1)÷2=3,
    第三个图形为:3×(3+1)÷2=6,
    第四个图形为:4×(4+1)÷2=10,
    …,
    所以第n个图形为:n(n+1)÷2个星,
    设第m个图形共有120个星,
    则m(m+1)÷2=120,
    解得:m=15.
    故答案为15.
    53.2026
    解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
    所以m,n是x2-x-3=0的两个不相等的实数根,
    则根据根与系数的关系可知:m+n=1,mn=-3,
    又n2=n+3,
    则2n2-mn+2m+2015
    =2(n+3)-mn+2m+2015
    =2n+6-mn+2m+2015
    =2(m+n)-mn+2021
    =2×1-(-3)+2021
    =2+3+2021
    =2026.

    54.
    【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.
    解:设平均每年增产的百分率为x;
    第一年粮食的产量为:300(1+x);
    第二年粮食的产量为:300(1+x)(1+x)=300(1+x)2;
    依题意,可列方程:300(1+x)2=363;
    故答案为:300(1+x)2=363.
    【点拨】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    55.3.
    【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可.
    解:,
    又∵,
    ∴,
    则,
    故答案为:3.
    【点拨】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算.
    56.1
    【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程求解即可.
    解:设道路的宽为x m,根据题意得:
    (10﹣x)(15﹣x)=126,
    解得:x1=1,x2=24(不合题意,舍去),
    则道路的宽应为1米;
    故答案为:1.
    【点拨】此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.
    57.40.5
    解:依题意有
    50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).
    答:今年PM2.5的年均浓度将是40.5微克/立方米.
    考点:有理数的混合运算.
    58.
    解:分析:根据题意可得△=0,进而可得k2-4=0,再解即可.
    详解:由题意得:△=k2-4=0,
    解得:k=±2,
    故答案为±2.
    点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:
    ①当△>0时,方程有两个不相等的两个实数根;
    ②当△=0时,方程有两个相等的两个实数根;
    ③当△<0时,方程无实数根.
    59.x(x﹣12)=864.
    【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.
    解:∵长为x步,宽比长少12步,
    ∴宽为(x﹣12)步.
    依题意,得:x(x﹣12)=864.
    【点拨】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.
    60.
    【分析】根据题意设出未知数,列出三组等式解出即可.
    解:设底面长为a,宽为b,正方形边长为x,
    由题意得:,
    解得a=10-2x,b=6-x,代入ab=24中得: (10-2x)(6-x)=24,
    整理得:2x2-11x+18=0.
    解得x=2或x=9(舍去).
    故答案为2.
    【点拨】本题考查一元二次方程的应用,关键在于不怕设多个未知数,利用代数表示列出方程.
    61.②.
    【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.
    解:即,
    构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,
    据此易得.
    故答案为.
    【点拨】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.
    62.4或8
    【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4.
    解:设AA′=x,AC与A′B′相交于点E,
    ∵△ACD是正方形ABCD剪开得到的,
    ∴△ACD是等腰直角三角形,
    ∴∠A=45∘,
    ∴△AA′E是等腰直角三角形,
    ∴A′E=AA′=x,
    A′D=AD−AA′=12−x,
    ∵两个三角形重叠部分的面积为32,
    ∴x(12−x)=32,
    整理得,x−12x+32=0,
    解得x=4,x=8,
    即移动的距离AA′等4或8.
    【点拨】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
    63.2:3
    解:∵小正方形与大正方形的面积之比为1:13,
    ∴设大正方形的面积是13,
    ∴c2=13,
    ∴a2+b2=c2=13,
    ∵直角三角形的面积是=3,
    又∵直角三角形的面积是ab=3,
    ∴ab=6,
    ∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,
    ∴a+b=5.
    则a、b是方程x2﹣5x+6=0的两个根,
    故b=3,a=2,
    ∴.
    故答案是:2:3.
    考点:勾股定理证明的应用
    64.四.
    【分析】由二次项系数非零及根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由a的取值范围可得出a+1>0,-a-3<0,进而可得出点P在第四象限,此题得解.
    解:∵关于x的一元二次方程有两个不相等的实数根,
    ∴,
    解得:且.
    ∴,,
    ∴点在第四象限.
    故答案为四.
    【点拨】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a的一元一次不等式组是解题的关键.
    65.a<1且a≠0
    【分析】由关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,继而可求得a的范围.
    解:∵关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,
    ∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>0,
    解得:a<1,
    ∵方程ax2+2x+1=0是一元二次方程,
    ∴a≠0,
    ∴a的范围是:a<1且a≠0.
    故答案为a<1且a≠0.
    【点拨】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.
    66.6.
    解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,
    ∴AD=BD=CD=cm.
    又∵AP=,∴.
    ∵PE∥BC,∴△APE∽△ADC.∴,即.
    ∴PE=AP=.
    ∴.
    ∵S1=2S2,∴,解得:t=6.
    67.
    【分析】由题意得2b(b﹣a)+a(b﹣a)+3ab=0,然后再将所求的式子化简即可.
    解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,
    整理得:2()2+﹣1=0,
    解得=,
    ∵a>b>0,
    ∴=,
    故答案是:.
    【点拨】考查了分式的化简求值,解题的关键是掌握分式化简的解题步骤.
    68.12
    【分析】先求方程x2-6x+8=0的根,再由三角形的三边关系确定出三角形的第三边的取值范围,即可确定第三边的长,利用三角形的周长公式可求得这个三角形的周长.
    解:∵三角形的两边长分别为3和5,∴5-3<第三边<5+3,即2<第三边<8,
    又∵第三边长是方程x2-6x+8=0的根,∴解之得根为2和4,2不在范围内,舍掉,
    ∴第三边长为4.即勾三股四弦五,三角形是直角三角形.
    ∴三角形的周长:3+4+5=12.
    故答案为12.
    【点拨】本题考查了解一元二次方程和三角形的三边关系.属于基础题型,应重点掌握.
    69.1
    【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
    解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,
    整理得,3x+3=6,
    解得,x=1,
    故答案为1.
    【点拨】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.
    70.3<m≤5.
    解:分析:根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.
    详解:依题意得:,
    解得3<m≤5.
    故答案是:3<m≤5.
    点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.
    71.x(x﹣1)=21
    解:【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
    【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
    x(x﹣1)=21,
    故答案为x(x﹣1)=21.
    【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    72.x(x+1);6
    【分析】先求出方程的解,然后化简分式,最后选择合适的x代入计算即可.
    解:∵
    ∴x=2或x=-1

    =
    =

    =
    =x(x+1)
    ∵x=-1分式无意义,∴x=2
    当x=2时,x(x+1)=2×(2+1)=6.
    【点拨】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x的值是解答本题的易错点.
    73.x=-4.
    【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.
    解:去分母得2x2-8=x2-2x,
    移项、整理得x2+2x-8=0,
    解得:x1=2,x2=-4.
    经检验:x=2是增根,舍去;x=-4是原方程的根.
    ∴原方程的根是x=-4.
    【点拨】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.
    74.(1),;(2)存在,
    【分析】(1)根据题意可得△>0,再代入相应数值解不等式即可,再利用根与系数的关系求解即可;
    (2)根据根与系数的关系可得关于m的方程,整理后可即可解出m的值.
    解:(1)由题意:Δ=(−6)2−4×1×(2m−1)>0,
    ∴m<5,
    将x1=1代入原方程得:m=3,
    又∵x1•x2=2m−1=5,
    ∴x2=5,m=3;
    (2)设存在实数m,满足,那么
    有,
    即,
    整理得:,
    解得或.
    由(1)可知,
    ∴舍去,从而,
    综上所述:存在符合题意.
    【点拨】本题主要考查了根的判别式,以及根与系数的关系,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.以及根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,.
    75.(1);(2)-1.
    【分析】根据一元二次方程根与系数的关系得到.
    (1)把,代入,即可求出的值;
    (2)把,代入,得到.利用整体代入即可求解.
    解:∵已知一元二次方程的两根分别为m,n,
    ∴.
    (1)当时,

    解得,
    经检验,是方程的根,
    ∴;
    (2)当时,

    ∴.
    【点拨】本题考查了一元二次方程根与系数的关系,根据题意得到是解题关键.
    76.(1)见详解;(2)
    【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;
    (2)设关于的一元二次方程的两实数根为,然后根据一元二次方程根与系数的关系可得,进而可得,最后利用完全平方公式代入求解即可.
    解:(1)证明:由题意得:,
    ∴,
    ∵,
    ∴,
    ∴该方程总有两个实数根;
    (2)解:设关于的一元二次方程的两实数根为,则有:,
    ∵,
    ∴,
    解得:,
    ∵,
    ∴.
    【点拨】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.
    77.(1);(2)1
    【分析】(1)直接利用根的判别式即可求解;
    (2)根据韦达定理可得,,得到,根据两个根和m都是整数,进行分类讨论即可求解.
    解:(1)∵一元二次方程有两个不相等的实数根,
    ∴,
    解得;
    (2)设该方程的两个根为、,
    ∵该方程的两个根都是符号相同的整数,
    ∴,,
    ∴,
    ∴m的值为1或2,
    当时,方程两个根为、;
    当时,方程两个根与不是整数;
    ∴m的值为1.
    【点拨】本题考查一元二次方程根的判别式、韦达定理,掌握上述知识点是解题的关键.
    78.(1)见解析;(2)0或-2或1或-1
    【分析】(1)计算判别式的值,然后根据判别式的意义得到结论;
    (2)先利用因式分解法得出方程的两个根,再结合k与都为整数,得出k的值;
    解:(1)
    ∵△=
    =
    ∴无论k取何值, 方程都有两个不相等的实数根.
    (2)∵

    ∴=0
    ∴,或,
    当,时,

    ∵k与都为整数,
    ∴k=0或-2
    当,时,
    ∴,
    ∵k与都为整数,
    ∴k=1或-1
    ∴k所有可能的值为0或-2或1或-1
    【点拨】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不等的实数根”;(2)利用因式分解法求出方程的解.
    79.(1)y=10x+100;(2)这种消毒液每桶实际售价43元
    【分析】(1)设与之间的函数表达式为,将点、代入一次函数表达式,即可求解;
    (2)根据利润等于每桶的利润乘以销售量得关于的一元二次方程,通过解方程即可求解.
    解:(1)设与销售单价之间的函数关系式为:,
    将点、代入一次函数表达式得:,
    解得:,
    故函数的表达式为:;
    (2)由题意得:,
    整理,得.
    解得,(舍去).
    所以.
    答:这种消毒液每桶实际售价43元.
    【点拨】本题主要考查了一元二次方程的应用以及用待定系数法求一次函数解析式等知识,正确利用销量每件的利润总利润得出一元二次方程是解题关键.
    80.(1)20%;(2)能
    【分析】(1)设亩产量的平均增长率为x,依题意列出关于x的一元二次方程,求解即可;
    (2)根据(1)求出的平均增长率计算第四阶段亩产量即可.
    解:(1)设亩产量的平均增长率为x,根据题意得:

    解得:,(舍去),
    答:亩产量的平均增长率为20%.
    (2)第四阶段的亩产量为(公斤),
    ∵,
    ∴他们的目标可以实现.
    【点拨】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.
    81.(1)10%;(2)6件
    【分析】(1)根据某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同,可设每次降价的百分率为x,从而可以列出方程60(1-x)2=48.6,然后求解即可;
    (2)根据题意和(1)中的结果,可以列出相应的不等式,然后即可求得第一次降价出售的件数的取值范围,再根据件数为整数,即可得到第一次降价至少售出多少件后,方可进行第二次降价.
    解:(1)设该商品每次降价的百分率为x,
    60(1-x)2=48.6,
    解得x1=0.1,x2=1.9(舍去),
    答:该商品每次降价的百分率是10%;
    (2)设第一次降价售出a件,则第二次降价售出(20-a)件,
    由题意可得,[60(1-10%)-40]a+(48.6-40)×(20-a)≥200,
    解得a≥,
    ∵a为整数,
    ∴a的最小值是6,
    答:第一次降价至少售出6件后,方可进行第二次降价.
    【点拨】本题考查一元二次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出等量关系和不等关系,列出相应的方程和不等式,第一问是典型的的下降率问题,是中考常考题型.
    82.(1)漫灌方式每亩用水100吨,漫灌、喷灌、滴灌试验田分别用水10000、3000、2000吨;(2)20;(3)节省水费大于两项投入之和
    【分析】(1)根据题意,设漫灌方式每亩用水吨,列出方程求解即可;
    (2)由(1)结果,结合题意列出方程,求解方程;
    (3)分别求出节省的水费,维修费,添加设备费,比较大小即可.
    解:(1)解:设漫灌方式每亩用水吨,则


    漫灌用水:,
    喷灌用水:,
    滴灌用水:,
    答:漫灌方式每亩用水100吨,漫灌、喷灌、滴灌试验田分别用水10000、3000、2000吨.
    (2)由题意得,

    解得(舍去),,所以.
    (3)节省水费:元,
    维修投入:元,
    新增设备:元,

    答:节省水费大于两项投入之和.
    【点拨】本题考查一元一次方程,一元二次方程实际应用,解一元二次方程,掌握题中等量关系正确列式计算是解题关键.
    83.(1)A产品的销售单价为300元,B产品的销售单价为200元;(2)20
    【分析】(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元,根据题意列出方程解出即可;
    (2)设去年每个车间生产产品的数量为t件,根据题意根据题意列出方程解出即可;
    解:(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元.
    根据题意,得

    解这个方程,得.
    则.
    答:A产品的销售单价为300元,B产品的销售单价为200元.
    (2)设去年每个车间生产产品的数量为t件,根据题意,得

    设a%=m,则原方程可化简为.
    解这个方程,得(舍去).
    ∴a=20.
    答:a的值是20.
    【点拨】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元二次方程.
    84.(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a的值为8.
    【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x、y元,根据题意列出二元一次方程组,解方程组即可;
    (2)根据题意列出一元二次方程,解方程即可.
    解:(1)设每份“堂食”小面和“生食”小面的价格分别是x、y元,根据题意列方程组得,,
    解得,,
    答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.
    (2)根据题意得,,
    解得,(舍去),,
    答:a的值为8.
    【点拨】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.

    相关试卷

    专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共59页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共52页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题23.12 《旋转》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题23.12 《旋转》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map