所属成套资源:基础知识点专项讲练 - 人教版数学九年级上册知识讲解+专项练习(基础+巩固+培优)
- 专题22.5 二次函数y=ax²(a≠0)的图象与性质(专项练习)(提高篇)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 8 次下载
- 专题22.6 二次函数y=ax²+c(a≠0)的图象与性质(知识讲解)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 其他 4 次下载
- 专题22.8 二次函数y=a(x-h)²+k(a≠0)的图象与性质(知识讲解)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 其他 5 次下载
- 专题22.9 二次函数y=a(x-h)²+k(a≠0)的图象与性质(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 8 次下载
- 专题22.10 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 其他 5 次下载
专题22.7 二次函数y=ax²+c(a≠0)的图象与性质(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)
展开
这是一份专题22.7 二次函数y=ax²+c(a≠0)的图象与性质(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共24页。试卷主要包含了对称轴为y轴的二次函数是,抛物线的顶点坐标是,二次函数在内的最小值是,关于二次函数下列说法正确的是,已知点,设点等内容,欢迎下载使用。
专题22.7 二次函数y=ax2+c(a≠0)的图象与性质(专项练习)
一、 单选题
1.对称轴为y轴的二次函数是( )
A.y=(x+1)2 B.y=2(x-1)2 C.y=2x2+1 D.y=-(x-1)2
2.抛物线的顶点坐标是( )
A. B. C. D.
3.二次函数在内的最小值是( )
A.3 B.2 C.-29 D.-30
4.关于二次函数下列说法正确的是( ).
A.有最大值-2 B.有最小值-2 C.对称轴是 D.对称轴是
5.抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是( )
A.开口向上
B.对称轴是y轴
C.当x>0时,y随x的增大而增大
D.都有最低点
6.对于抛物线与抛物线,下列说法错误的是( )
A.开口方向相同 B.对称轴相同
C.都有最高点 D.顶点坐标相同
7.已知点(﹣4,y1),(2,y2)均在抛物线y=x2﹣1上,则y1,y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y2
8.设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣x2+a上的三点,则y1、y2、y3的大小关系为( )
A.y3>y2>y1 B.y1>y3>y2 C.y3>y1>y2 D.y1>y2>y3
9.已知抛物线上有两点,,且,则与的大小关系为( )
A. B.
C. D.不能确定
10.若抛物线y=﹣2x2+2x经过两点A(﹣1,y1)和B(3,y2),则下列关系式正确的是( )
A.0<y2<y1 B.y1<y2<0 C.y2<0<y1 D.y2<y1<0
11.已知点,均在抛物线上,则、 的大小关系为( )
A. B. C. D.
12.已知二次函数y=2x2+3的图象上有三点A(,y1),B(5,y2),C(-,y3),则y1,y2,y3的大小关系为( )
A.y2>y1>y3 B.y2>y3>y1 C.y1>y2>y3 D.y1>y3>y2
13.二次函数y=x2+1的图象大致是( )
A. B.
C. D.
14.二次函数y=-x2-2的图象大致是( )
A.B.C.D.
15.二次函数y=x2+1的图象大致是( )
A. B. C. D.
16.二次函数y=﹣x2+2x的图象可能是( )
A. B. C. D.
17.直线y=ax+c与抛物线y=ax2+c的图象画在同一个直角坐标系中,可能是下面的( )
A. B. C.D.
18.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为( )
A. B. C. D.
19.已知抛物线y=-x2+1,下列结论:
①抛物线开口向上;
②抛物线与x轴交于点(-1,0)和点(1,0);
③抛物线的对称轴是y轴;
④抛物线的顶点坐标是(0,1);
⑤抛物线y=-x2+1是由抛物线y=-x2向上平移1个单位得到的.
其中正确的个数有( )
A.5个 B.4个 C.3个 D.2个
20.二次函数的图象是一条抛物线,下列关于该抛物线的说法正确的是( )
A.抛物线开口向下 B.抛物线与轴有两个交点
C.抛物线的对称轴是直线=1 D.抛物线经过点(2,3)
21.若二次函数y=x2+与y=-x2+k的图象的顶点重合,则下列结论不正确的是( )
A.这两个函数图象有相同的对称轴 B.这两个函数图象的开口方向相反
C.方程-x2+k=0没有实数根 D.二次函数y=-x2+k的最大值为
22.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若点(-2,y1)和(-,y2)在该图象上,则y1>y2. 其中正确的结论个数是 ( )
A.1个 B.2个 C.3个 D.4个
23.小张同学说出了二次函数的两个条件:
(1)当x<1时,y随x的增大而增大;
(2)函数图象经过点(-2,4).
则符合条件的二次函数表达式可以是( )
A.y=-(x-1)2-5 B.y=2(x-1)2-14
C.y=-(x+1)2+5 D.y=-(x-2)2+20
24.已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:①当时,随增大而增大;②抛物线一定过原点;③ 方程的解为或;④当时,;⑤.其中结论错误的个数有( )个
A.1 B.2 C.3 D.4
二、 填空题
25.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B,C,则BC的长为________.
26.如图,抛物线与过点(0,-3)且平行于x轴的直线相交于点、,与轴交于点C,若 为直角,则a=_______
27.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”与坐标轴的交点,AB是半圆的直径,抛物线的解析式为,则图中CD的长为__________.
28.如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于_______.
三、 解答题
29.已知二次函数y=ax2与y=﹣2x2+c.
(1)随着系数a和c的变化,分别说出这两个二次函数图象的变与不变;
(2)若这两个函数图象的形状相同,则a= ;若抛物线y=ax2沿y轴向下平移2个单位就能与y=﹣2x2+c的图象完全重合,则c= ;
(3)二次函数y=﹣2x2+c中x、y的几组对应值如表:
x
﹣2
1
5
y
m
n
p
表中m、n、p的大小关系为 (用“<”连接).
30.探究函数y=x+4x的图象与性质
(1)函数y=x+4x的自变量x的取值范围是___;
(2)下列四个函数图象中,函数y=x+4x的图象大致是___;
A. B. C. D.
(3)对于函数y=x+4x,求当x>0时,y的取值范围。
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+4x=(x)2+(2x)2
=(x−2x)2+___
∵(x−2x)2≥0
∴y=____.
(拓展应用)
(4) 若函数y=x2+5x+4x,求y的取值范围.
31.如图,在平面直角坐标系中,为原点,四边形是矩形,点、的坐标分别是和,点为对角线上一动点(不与、重合),连结,作,交轴于点,以线段、为邻边作矩形.
(1)填空:点的坐标为______;
(2)当是等腰三角形时,试求出的长;
(3)设,矩形的面积为,求关于的函数关系式,并求出的最小值.
参考答案
1.C
【分析】
由已知可知对称轴为x=0,从而确定函数解析式y=ax2+bx+c中,b=0,由选项入手即可.
解:二次函数的对称轴为y轴,
则函数对称轴为x=0,
即函数解析式y=ax2+bx+c中,b=0,
故选:C.
【点拨】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.
2.C
【分析】
根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.
解:∵y=-2x2-1,
∴该抛物线的顶点坐标为(0,-1),
故选:C.
【点拨】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.
3.C
【分析】
根据图象,直接代入计算即可解答
解:由图可知,当x=4时,函数取得最小值y最小值=-2×16+3=-29.
故选:C.
【点拨】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.
4.A
【分析】
利用二次函数的性质即可判断各个选项中的结论是否正确.
解:∵二次函数y=﹣x2﹣2,
∴a=﹣1,开口向下,有最大值y=﹣2,
∴选项A正确,选项B错误;
∵二次函数y=﹣x2﹣2的对称轴为直线x=0,
∴选项C、D错误,
故选:A.
【点拨】本题考查了二次函数的性质、二次函数的最值,解题的关键是明确题意,利用二次函数的性质解答.
5.B
【分析】
根据二次函数 的性质逐个判断即可.
解:抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是对称轴都是y轴,故选项B正确;
y=的开口向上,y=﹣2018x2+2019的开口向下,y=2018x2的开口向上,故选项A错误;
在y=中,当x>0时,y随x的增大而增大,在y=﹣2018x2+2019中,当x>0时,y随x的增大而减小,在y=2018x2中,当x>0时,y随x的增大而增大,故选项C错误;
抛物线y=和y=2018x2有最低点,抛物线y=﹣2018x2+2019有最高点,故选项D错误;
故选:B.
【点拨】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
6.D
【分析】
根据二次函数的性质,结合两函数顶点式形式,即可得出两二次函数的开口方向、顶点坐标以及对称轴和是否有最高点,分别分析即可.
解:∵抛物线,
∴此函数顶点坐标为(0,0),对称轴为y轴,a
相关试卷
这是一份专题22.16 二次函数y=ax²+bx+c(a≠0)的图象与性质(培优篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共47页。试卷主要包含了已知抛物线y1等内容,欢迎下载使用。
这是一份专题22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共34页。试卷主要包含了单选题,四B.一,填空题等内容,欢迎下载使用。
这是一份专题22.14 二次函数y=ax²+bx+c(a≠0)的图象与性质(专项练习3)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共55页。试卷主要包含了在抛物线y=a,二次函数的最大值为,关于二次函数,下列说法错误的是,二次函数的最小值是等内容,欢迎下载使用。