- 专题23.9 《旋转》中的等腰模型(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 3 次下载
- 专题23.10 《旋转》中的双等腰模型(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 3 次下载
- 专题23.12 《旋转》中考真题专练(基础篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 3 次下载
- 专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 4 次下载
- 专题23.14 《旋转》中考真题专练(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版) 试卷 4 次下载
专题23.11 《旋转》中的对角互补模型(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)
展开专题23.11 《旋转》中的对角互补模型(专项练习)
一、解答题
1.在中,,,于点,
(1)如图1,点,分别在,上,且,当,时,求线段的长;
(2)如图2,点,分别在,上,且,求证:;
(3)如图3,点在的延长线上,点在上,且,求证:;
2.把两个完全相同的正边形拼一起,其中一个正多边形的顶点在另一个正多边形的中心处,如图所见和如图所见分别为和的情形,
(1)求如图所见中重叠部分与阴影部分的面积比;
(2)求如图所见中重叠部分与阴影部分的面积比;
(3)请直接写出正边形重叠部分与阴影部分的面积比.
3.如图所示,中,,,把一块含角的直角三角板的直角顶点放在的中点上(直角三角板的短直角边为,长直角边为),将三角板绕点按逆时针方向旋转.
(1)在如图所见中,交于,交于,证明;
(2)继续旋转至如图所见,延长交于,延长交于,证明.
4.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.
(1)当DF⊥AC时,求证:BE=CF;
(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由
5.如图所示,为等边三角形,边长为4,点为边中点,,其两边分别交和的延长线于,,求的值.
6.五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE.
7.如图,在中,,,点在上,点在上,,连接,,,垂足为.证明:.
8.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.
(1)如图①,四边形ABCD为对直角四边形,∠B=90°,若AB2-AD2=4,求CD2-BC2的值;
(2)如图②,四边形ABCD中,∠ABC=90°,AB=BC,若BD平分∠ADC,求证:四边形ABCD为对直角四边形;
(3)在(2)的条件下,如图③,连结AC,若,求tan∠ACD的值.
9.一位同学拿了两块三角尺,做了一个探究活动:将的直角顶点放在的斜边的中点处,设.
(1)如图1所示,两三角尺的重叠部分为,则重叠部分的面积为______,周长为______.
(2)将如图1所示中的绕顶点逆时针旋转,得到如图2所示,此时重叠部分的面积为______,周长为______.
(3)如果将绕旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.
(4)在如图3所示情况下,若,求出重叠部分图形的周长.
10.和都是等腰直角三角形,与相交于点交于点交于点.试确定线段的关系.并说明理由.
11.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.
(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;
(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.
12.如图1,四边形ABCD中,BD⊥AD,E为BD上一点,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如图2,F为AD上一点,AF=DE,连接BF,交BF交AE于G,过G作GH⊥AB于H,∠BGH=75°.求证:BF=2GH+EG.
13.问题背景:如图1,在四边形中,,,,,,绕B点旋转,它的两边分别交、于E、F.探究图中线段,,之间的数量关系.小李同学探究此问题的方法是:延长到G,使,连接,先证明,再证明,可得出结论,他的结论就是_______________;
探究延伸1:如图2,在四边形中,,,,,绕B点旋转,它的两边分别交、于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.
探究延伸2:如图3,在四边形中,,,,绕B点旋转,它的两边分别交、于E、F.上述结论是否仍然成立?并说明理由.
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西的A处舰艇乙在指挥中心南偏东的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为,试求此时两舰艇之间的距离.
参考答案
1.(1) ;(2)见解析;(3)见解析.
【分析】
(1)根据等腰三角形的性质、直角三角形的性质得到 AD=BD=DC= ,求出 ∠MBD=30°,根据勾股定理计算即可;
(2)证明△BDE≌△ADF,根据全等三角形的性质证明;
(3)过点 M作 ME∥BC交 AB的延长线于 E,证明△BME≌△AMN,根据全等三角形的性质得到 BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.
【详解】
(1)解:,,,
,,,
,
,
,
,
,
,
由勾股定理得,,即,
解得,,
;
(2)证明:,,
,
在和中,
,
;
(3)证明:过点作交的延长线于,
,
则,,
,
,,
,
在和中,
,
,
,
.
【点拨】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形
的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
2.(1);(2) ;(3)
【分析】
利用正多边形性质,如图所见中重叠部分面积转化为,如图所见中重叠部分面积转化为四边形,由此归纳正边形重叠部分与阴影部分的面积比为正边形内角与减去内角的差的比.
【详解】
(1)连结,
为正方形的中心,,
,
,,又
重叠部分面积和阴影部分面积比为
(2)连结,,
为正六边形的中心
又
重叠部分面积为
重叠部分与阴影部分的面积比为
(3)由(1)、(2)可得,正边形重叠部分与阴影部分的面积比为.
【点拨】面积割补法经常将不规则图形转化为规则图形,让问题得解,本问题体现从特殊到一般规律的探寻,注意第三问对一般结论的探求.正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点构造直角三角形,把正多边形的计算转化为解直角三角形.本题的解决思路是需要掌握的内容.
3.(1)见解析;(2)见解析.
【解析】
【分析】
(1)连接BD,证明△DMB≌△DNC.根据已知,全等条件已具备两个,再证出∠MDB=∠NDC,用ASA证明全等,四边形DMBN的面积不发生变化,因为它的面积始终等于△ABC面积的一半;
(2)同样利用(1)中的证明方法可以证出△DMB≌△DNC;
(3)方法同(1).
【详解】
证明:(1)连接BD,
∵AB=BC,∠ABC=90°,点D为AC的中点
∴BD⊥AC,∠A=∠C=45°
∴BD=AD=CD
∴∠ABD=∠A=45°
∴∠MBD=∠C=45°
∵∠MDB+∠BDN=90°
∠NDC+∠BDN=90°
∴∠MDB=∠NDC
在△MDB和△NDC中
∴△MDB≌△NDC(ASA)
∴DM=DN(5分)
(2)DM=DN仍然成立.理由如下:连接BD,
由(1)知BD⊥AC,BD=CD
∴∠ABD=∠ACB=45°
∵∠ABD+∠MBD=180°∠ACB+∠NCD=180°
∴∠MBD=∠NCD
∵BD⊥AC
∴∠MDB+∠MDC=90°
又∠NDC+∠MDC=90°
∴∠MDB=∠NDC
在△MDB和△NDC中
∴△MDB≌△NDC(ASA)
∴DM=DN.
【点拨】本题主要考查学生的推理能力,题目比较典型,利用ASA求三角形全等(手拉手模型),还运用了全等三角形的性质,等腰直角三角形的性质,及等腰三角形三线合一定理等知识.
4.(1)证明见解析;(2)是,2.
【解析】
【分析】
(1)根据四边形内角和为360°,可求∠DEA=90°,根据“AAS”可判定△BDE≌△CDF,即可证BE=CF;
(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=CN,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=BC=2.
【详解】
(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,
∴∠B=∠C=60°,BD=CD,
∵DF⊥AC,
∴∠DFA=90°,
∵∠A+∠EDF+∠AFD+∠AED=180°,
∴∠AED=90°,
∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,
∴△BDE≌△CDF(AAS)
(2)过点D作DM⊥AB于M,作DN⊥AC于N,
则有∠AMD=∠BMD=∠AND=∠CND=90°.
∵∠A=60°,
∴∠MDN=360°-60°-90°-90°=120°.
∵∠EDF=120°,
∴∠MDE=∠NDF.
在△MBD和△NCD中,
,
∴△MBD≌△NCD(AAS)
BM=CN,DM=DN.
在△EMD和△FND中,
,
∴△EMD≌△FND(ASA)
∴EM=FN,
∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN
=2BM=2BD×cos60°=BD=BC=2.
【点拨】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、特殊角的三角函数值等知识,通过证明三角形全等得到BM=CN,DM=DN,EM=FN是解决本题的关键.
5.6
【解析】
【分析】
过点O作OC∥AB交AD于点C,根据等腰三角形的性质就可以得出△OCF≌△OBE,就可以得出CF=BE,进而可以得出结论.
【详解】
过点O作OD∥AB交AC于点D,
∴∠CDO=∠A=∠ACB=∠ABC=60°,
∴∠DOC=60°,∠ADO=∠BOD=120°.
∴△CDO是等边三角形,
∴DO=CO,
∴DO=BO=AD.
∵△ABC是等边三角形,
∴AB=AC=BC.∠CAB=∠ABC=∠C=60°,
∴∠OBE=120°,
∴∠ODF=∠OBE.
∵∠FOB+∠BOE=∠EOF=120°,∠DOF+∠FOB=∠BOD=120°
∴∠FOD=∠EOB.
在△DOF和△BOE中,
,
∴△DOF≌△BOE(ASA).
∴FC=EB.OF=OE.
∵AE=AB+BE,
∴AE=AB+DF,
∴AE=AB+AD+AF,
∴AE-AF=AB+AD.
∵AB+AD=AB,
∴AE-AF=AB.
∵AB=4,
∴AE-AF=6.
【点拨】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,线段中点的性质的运用,解答时正确作辅助线证明三角形全等是关键.
6.见解析
【解析】
【分析】
延长DE至F,使得EF=BC,连接AC,易证△ABC≌△AEF,得到EF=BC,AC=AF然后证明△ADC≌△ADF即可解决问题.
【详解】
延长DE至F,使得EF=BC,连接AC.
∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,
∴∠ABC=∠AEF
∵AB=AE,BC=EF,
∴△ABC≌△AEF.
∴EF=BC,AC=AF
∵BC+DE=CD,
∴CD=DE+EF=DF,
∴△ADC≌△ADF,
∴∠ADC=∠ADF
即AD平分∠CDE.
【点拨】本题主要考查全等三角形的判定与性质,根据题意作出辅助线构造全等三角形是解题关键.
7.见解析
【分析】
如图,延长到点,使,连接、,根据四边形的内角和和邻补角互补可得,进而可根据SAS证明,可得,,进一步即可求得,然后利用等腰三角形的性质和解直角三角形的知识即可证得结论.
【详解】
证明:如图,延长到点,使,连接、,
,
,
,
,
,,
,
,,
,
,,
,,
,
,
.
【点拨】本题考查了四边形的内角和、全等三角形的判定和性质、等腰三角形的性质和解直角三角形等知识,正确添加辅助线、灵活应用上述知识是解题的关键.
8.⑴ 4;⑵见解析 ;⑶tan∠ACD的值为3或.
【分析】
(1)利用勾股定理即可解决问题;
(2)如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.只要证明∠EBF=90°即可解决问题;
(3)如图③中,设AD=x,BD=y.根据,构建方程即可解决问题.
【详解】
解:如图①中,
∵四边形ABCD为对直角四边形,∠B=90°,
∴∠D=∠B=90°,
∴AC2=AB2+BC2=AD2+DC2,
∴CD2-BC2=AB2-AD2=4.
(2)证明:如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.
∵BD平分∠ADC,BE⊥CD,BF⊥AD,
∴BE=BF,
∵∠BFA=∠BEC=90°,BA=BC,BF=BE,
∴Rt△BFA≌Rt△BEC(HL),
∴∠ABF=∠CBE,
∴∠EBF=∠ABC=90°,
∴ADC=360°-90°-90°-90°=90°,
∵∠ABC=∠ADC=90°,
∴四边形ABCD为对直角四边形.
(3)解:如图③中,设AD=x,BD=y.
∵∠ADC=90°,
∴tan∠ACD=,AC=,
∵AB=AC,∠ABC=90°,
∴AB=BC=•,
∵,
∴,
整理得:3x2-10xy+3y2,
∴3()2-10•+3=0,
∴=3或.
∴tan∠ACD的值为3或.
【点拨】本题属于四边形综合题,考查了勾股定理,三角形的面积,全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.
9.(1)4,;(2)4,8;(3)4;(4)
【分析】
根据,,得出AB的值,再根据M是AB的中点,得出,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;
易得重叠部分是正方形,边长为,面积为,周长为
过点M分别作AC、BC的垂线MH、ME,垂足为H、求得≌,则阴影部分的面积等于正方形CEMH的面积
先过点M作于点E,于点H,根据,,得出≌,从而得出,,最后根据AD和DF的值,算出,即可得出答案
【详解】
解:,,
,
是AB的中点,
,
,
,
重叠部分的面积是,
周长为:;
故答案为4,;
重叠部分是正方形,
边长为,面积为,
周长为.
故答案为4,8.
过点M分别作AC、BC的垂线MH、ME,垂足为H、E,
是斜边AB的中点,,
,
,
,
又,
,,
,
在和中,
,
≌,
阴影部分的面积等于正方形CEMH的面积,
正方形CEMH的面积是;
阴影部分的面积是4;
故答案为4.
如图所示, 过点M作于点E,于点H,
四边形MECH是矩形,
,
,
,
,
,
在和中,
,
≌
,
,
,
,
.
四边形DMGC的周长为:
.
【点拨】此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.
10.且
【分析】
由已知条件可证明,再根据全等三角形的性质,得到 ,在中,又,可得:,即可证明且.
【详解】
解: 和是直角三角形
则
即
在与中
在中
又
则中,即,,
综上所述,且.
【点拨】本题主要考查三角形全等的判定方法和性质定理和等腰直角三角形的性质,从复杂的图形中找到全等三角形和“8”字形三角形是解题的关键.
11.(1)CF=CG;(2)CF=CG,见解析
【分析】
(1)结论CF=CG,由角平分线性质定理即可判断.
(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.
【详解】
解:(1)结论:CF=CG;
证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,
∴CF=CG(角平分线上的点到角两边的距离相等);
(2)CF=CG.理由如下:如图,
过点C作CM⊥OA,CN⊥OB,
∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,
∴CM=CN(角平分线上的点到角两边的距离相等),
∴∠AOC=∠BOC=60º(角平分线的性质),
∵∠DCE=∠AOC,
∴∠AOC=∠BOC=∠DCE=60º,
∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,
∴∠MCN=30º+30º=60º,
∴∠MCN=∠DCE,
∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,
∴∠MCF=∠NCG,
在△MCF和△NCG中,
∴△MCF≌△NCG(ASA),
∴CF=CG(全等三角形对应边相等);
【点拨】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .
12.(1)2;(2)证明见解析
【分析】
(1)由勾股定理得出BD==8,由HL证得Rt△ADE≌Rt△BEC,得出BE=AD,则CE=ED=BD﹣BE=BD﹣AD=2,由等腰直角三角形的性质即可得出结果;
(2)连接CF,易证AF=CE,AD∥CE,得出四边形AECF是平行四边形,则AE=CF,AE∥CF,得出∠CFD=∠EAD,∠CFB=∠AGF,由Rt△ADE≌Rt△BEC,得出∠CBE=∠EAD,推出∠CBE=∠CFD,证得△BCF是等腰直角三角形,则BF=BC=CF=AE,∠FBC=∠BFC=45°,推出∠AGF=45°,∠AGH=60°,∠GAH=30°,则AG=2GH,得出BF=AE=(AG+EG),即可得出结论.
【详解】
(1)解:∵BD⊥AD,
∴BD===8,
∵CE⊥BD,
∴∠CEB=∠EDA=90°,
在Rt△ADE和Rt△BEC中,,
∴Rt△ADE≌Rt△BEC(HL),
∴BE=AD,
∴CE=ED=BD﹣BE=BD﹣AD=8﹣6=2,
∴CD=CE=2;
(2)解:连接CF,如图2所示:
∵AF=DE,DE=CE,
∴AF=CE,
∵BD⊥AD,CE⊥BD,
∴AD∥CE,
∴四边形AECF是平行四边形,
∴AE=CF,AE∥CF,
∴∠CFD=∠EAD,∠CFB=∠AGF,
由(1)得:Rt△ADE≌Rt△BEC,
∴∠CBE=∠EAD,
∴∠CBE=∠CFD,
∵∠FBD+∠BFC+∠CFD=90°,
∴∠FBD+∠BFC+∠CBE=90°,
∴∠BCF=90°,
∵AE=BC,
∴BC=CF,
∴△BCF是等腰直角三角形,
∴BF=BC=CF=AE,∠FBC=∠BFC=45°,
∴∠AGF=45°,
∵∠BGH=75°,
∴∠AGH=180°﹣45°﹣75°=60°,
∵GH⊥AB,
∴∠GAH=30°,
∴AG=2GH,
∴BF=AE=(AG+EG),
∴BF=2GH+EG.
【点拨】本题考查了等腰直角三角形的判定与性质、含30°角直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定与性质、平行四边形的判定与性质等知识,熟练掌握直角三角形的性质、作辅助线构建平行四边形是解题的关键.
13.EF=AE+CF.探究延伸1:结论EF=AE+CF成立.探究延伸2:结论EF=AE+CF仍然成立.实际应用:210海里.
【分析】
延长到G,使,连接,先证明,可得BG=BE,∠CBG=∠ABE,再证明,可得GF=EF,即可解题;
探究延伸1:延长到G,使,连接,先证明,可得BG=BE,∠CBG=∠ABE,再证明,可得GF=EF,即可解题;
探究延伸2:延长到G,使,连接,先证明,可得BG=BE,∠CBG=∠ABE,再证明,可得GF=EF,即可解题;
实际应用:连接EF,延长AE,BF相交于点C,然后与探究延伸2同理可得EF=AE+CF,将AE和CF的长代入即可.
【详解】
解:EF=AE+CF
理由:延长到G,使,连接,
在△BCG和△BAE中,
,
∴(SAS),
∴BG=BE,∠CBG=∠ABE,
∵∠ABC=120°,∠MBN=60°,
∴∠ABE+∠CBF=60°,
∴∠CBG+∠CBF=60°,
即∠GBF=60°,
在△BGF和△BEF中,
,
∴△BGF≌△BEF(SAS),
∴GF=EF,
∵GF=CG+CF=AE+CF,
∴EF=AE+CF.
探究延伸1:结论EF=AE+CF成立.
理由:延长到G,使,连接,
在△BCG和△BAE中,
,
∴(SAS),
∴BG=BE,∠CBG=∠ABE,
∵∠ABC=2∠MBN,
∴∠ABE+∠CBF=∠ABC,
∴∠CBG+∠CBF=∠ABC,
即∠GBF=∠ABC,
在△BGF和△BEF中,
,
∴△BGF≌△BEF(SAS),
∴GF=EF,
∵GF=CG+CF=AE+CF,
∴EF=AE+CF.
探究延伸2:结论EF=AE+CF仍然成立.
理由:延长到G,使,连接,
∵,∠BCG+∠BCD=180°,
∴∠BCG=∠BAD
在△BCG和△BAE中,
,
∴(SAS),
∴BG=BE,∠CBG=∠ABE,
∵∠ABC=2∠MBN,
∴∠ABE+∠CBF=∠ABC,
∴∠CBG+∠CBF=∠ABC,
即∠GBF=∠ABC,
在△BGF和△BEF中,
,
∴△BGF≌△BEF(SAS),
∴GF=EF,
∵GF=CG+CF=AE+CF,
∴EF=AE+CF.
实际应用:连接EF,延长AE,BF相交于点C,
∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=∠AOB
∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件
∴结论EF= AE+CF仍然成立
即EF=75×1.2+100×1.2=210(海里)
答:此时两舰艇之间的距离为210海里.
【点拨】本题考查了全等三角形的判定与性质.作辅助线构造全等三角形是解题的关键.
最新中考几何专项复习专题05 对角互补模型知识精讲: 这是一份最新中考几何专项复习专题05 对角互补模型知识精讲,共6页。
最新中考几何专项复习专题05 对角互补模型巩固练习(提优): 这是一份最新中考几何专项复习专题05 对角互补模型巩固练习(提优),文件包含中考几何专项复习专题05对角互补模型巩固练习提优教师版含解析docx、中考几何专项复习专题05对角互补模型巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
最新中考几何专项复习专题05 对角互补模型巩固练习(基础): 这是一份最新中考几何专项复习专题05 对角互补模型巩固练习(基础),文件包含中考几何专项复习专题05对角互补模型巩固练习基础教师版含解析docx、中考几何专项复习专题05对角互补模型巩固练习基础学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。